
What is the solution of the equation \[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]?
A. \[{\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = 0\]
B. \[{\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {c^2}{y^2}\]
C. \[{\left( {y - 1} \right)^2}\left( {1 + {x^2}} \right) = {c^2}{y^2}\]
D. None of these
Answer
232.8k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Product of logarithm formula
\[\log a + \log b = \log ab\]
Complete step by step solution:
Given differential equation is
\[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]
Separate the variables of the above equation:
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = x{y^2}dx - xydx\]
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = xy\left( {y - 1} \right)dx\]
Divide both sides by \[\left( {1 - {x^2}} \right)y\left( {y - 1} \right)\]
\[ \Rightarrow \dfrac{{\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dy = \dfrac{{xy\left( {y - 1} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dx\]
Cancel out common term from denominator and numerator
\[ \Rightarrow \dfrac{1}{{y\left( {y - 1} \right)}}dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(i)
We know that, \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\]
Substitute \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\] in equation (i)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(ii)
Assume that, \[\left( {1 - {x^2}} \right) = z\]
Differentiate the above equation:
\[ - 2xdx = dz\]
Substitute \[\left( {1 - {x^2}} \right) = z\] and \[2xdx = dz\] in equation (ii)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = - \dfrac{1}{{2z}}dz\]
Apply antiderivative in the above equation
\[ \Rightarrow \int {\dfrac{1}{{y - 1}}dy} - \int {\dfrac{1}{y}dy} = - \int {\dfrac{1}{{2z}}dz} \]
\[ \Rightarrow \log \left| {y - 1} \right| - \log \left| y \right| = - \dfrac{1}{2}\log \left| z \right| + \log c\]
Multiply both sides by 2
\[ \Rightarrow 2\log \left| {y - 1} \right| - 2\log \left| y \right| = - \log \left| z \right| + 2\log c\]
Applying logarithm power rule
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| z \right| + \log {c^2}\]
Putting \[\left( {1 - {x^2}} \right) = z\]
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| {1 - {x^2}} \right| + \log {c^2}\]
Rearrange the terms:
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| + \log \left| {1 - {x^2}} \right| = \log \left| {{y^2}} \right| + \log {c^2}\]
Now applying product rule of logarithm:
\[ \Rightarrow \log \left[ {{{\left( {y - 1} \right)}^2}\left( {1 - {x^2}} \right)} \right] = \log \left| {{y^2}{c^2}} \right|\]
\[ \Rightarrow {\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {y^2}{c^2}\]
Hence option B is the correct option.
Note: Students often take c as integrating constant. After solving the differential equation, we get that all terms are a logarithm function. Thus, we have to take \[\log c\] as an integrating constant.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Product of logarithm formula
\[\log a + \log b = \log ab\]
Complete step by step solution:
Given differential equation is
\[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]
Separate the variables of the above equation:
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = x{y^2}dx - xydx\]
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = xy\left( {y - 1} \right)dx\]
Divide both sides by \[\left( {1 - {x^2}} \right)y\left( {y - 1} \right)\]
\[ \Rightarrow \dfrac{{\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dy = \dfrac{{xy\left( {y - 1} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dx\]
Cancel out common term from denominator and numerator
\[ \Rightarrow \dfrac{1}{{y\left( {y - 1} \right)}}dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(i)
We know that, \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\]
Substitute \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\] in equation (i)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(ii)
Assume that, \[\left( {1 - {x^2}} \right) = z\]
Differentiate the above equation:
\[ - 2xdx = dz\]
Substitute \[\left( {1 - {x^2}} \right) = z\] and \[2xdx = dz\] in equation (ii)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = - \dfrac{1}{{2z}}dz\]
Apply antiderivative in the above equation
\[ \Rightarrow \int {\dfrac{1}{{y - 1}}dy} - \int {\dfrac{1}{y}dy} = - \int {\dfrac{1}{{2z}}dz} \]
\[ \Rightarrow \log \left| {y - 1} \right| - \log \left| y \right| = - \dfrac{1}{2}\log \left| z \right| + \log c\]
Multiply both sides by 2
\[ \Rightarrow 2\log \left| {y - 1} \right| - 2\log \left| y \right| = - \log \left| z \right| + 2\log c\]
Applying logarithm power rule
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| z \right| + \log {c^2}\]
Putting \[\left( {1 - {x^2}} \right) = z\]
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| {1 - {x^2}} \right| + \log {c^2}\]
Rearrange the terms:
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| + \log \left| {1 - {x^2}} \right| = \log \left| {{y^2}} \right| + \log {c^2}\]
Now applying product rule of logarithm:
\[ \Rightarrow \log \left[ {{{\left( {y - 1} \right)}^2}\left( {1 - {x^2}} \right)} \right] = \log \left| {{y^2}{c^2}} \right|\]
\[ \Rightarrow {\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {y^2}{c^2}\]
Hence option B is the correct option.
Note: Students often take c as integrating constant. After solving the differential equation, we get that all terms are a logarithm function. Thus, we have to take \[\log c\] as an integrating constant.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

