
What is the solution of the equation \[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]?
A. \[{\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = 0\]
B. \[{\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {c^2}{y^2}\]
C. \[{\left( {y - 1} \right)^2}\left( {1 + {x^2}} \right) = {c^2}{y^2}\]
D. None of these
Answer
218.4k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Product of logarithm formula
\[\log a + \log b = \log ab\]
Complete step by step solution:
Given differential equation is
\[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]
Separate the variables of the above equation:
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = x{y^2}dx - xydx\]
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = xy\left( {y - 1} \right)dx\]
Divide both sides by \[\left( {1 - {x^2}} \right)y\left( {y - 1} \right)\]
\[ \Rightarrow \dfrac{{\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dy = \dfrac{{xy\left( {y - 1} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dx\]
Cancel out common term from denominator and numerator
\[ \Rightarrow \dfrac{1}{{y\left( {y - 1} \right)}}dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(i)
We know that, \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\]
Substitute \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\] in equation (i)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(ii)
Assume that, \[\left( {1 - {x^2}} \right) = z\]
Differentiate the above equation:
\[ - 2xdx = dz\]
Substitute \[\left( {1 - {x^2}} \right) = z\] and \[2xdx = dz\] in equation (ii)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = - \dfrac{1}{{2z}}dz\]
Apply antiderivative in the above equation
\[ \Rightarrow \int {\dfrac{1}{{y - 1}}dy} - \int {\dfrac{1}{y}dy} = - \int {\dfrac{1}{{2z}}dz} \]
\[ \Rightarrow \log \left| {y - 1} \right| - \log \left| y \right| = - \dfrac{1}{2}\log \left| z \right| + \log c\]
Multiply both sides by 2
\[ \Rightarrow 2\log \left| {y - 1} \right| - 2\log \left| y \right| = - \log \left| z \right| + 2\log c\]
Applying logarithm power rule
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| z \right| + \log {c^2}\]
Putting \[\left( {1 - {x^2}} \right) = z\]
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| {1 - {x^2}} \right| + \log {c^2}\]
Rearrange the terms:
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| + \log \left| {1 - {x^2}} \right| = \log \left| {{y^2}} \right| + \log {c^2}\]
Now applying product rule of logarithm:
\[ \Rightarrow \log \left[ {{{\left( {y - 1} \right)}^2}\left( {1 - {x^2}} \right)} \right] = \log \left| {{y^2}{c^2}} \right|\]
\[ \Rightarrow {\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {y^2}{c^2}\]
Hence option B is the correct option.
Note: Students often take c as integrating constant. After solving the differential equation, we get that all terms are a logarithm function. Thus, we have to take \[\log c\] as an integrating constant.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Product of logarithm formula
\[\log a + \log b = \log ab\]
Complete step by step solution:
Given differential equation is
\[\left( {1 - {x^2}} \right)dy + xydx = x{y^2}dx\]
Separate the variables of the above equation:
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = x{y^2}dx - xydx\]
\[ \Rightarrow \left( {1 - {x^2}} \right)dy = xy\left( {y - 1} \right)dx\]
Divide both sides by \[\left( {1 - {x^2}} \right)y\left( {y - 1} \right)\]
\[ \Rightarrow \dfrac{{\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dy = \dfrac{{xy\left( {y - 1} \right)}}{{\left( {1 - {x^2}} \right)y\left( {y - 1} \right)}}dx\]
Cancel out common term from denominator and numerator
\[ \Rightarrow \dfrac{1}{{y\left( {y - 1} \right)}}dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(i)
We know that, \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\]
Substitute \[\dfrac{1}{{y\left( {y - 1} \right)}} = \dfrac{1}{{y - 1}} - \dfrac{1}{y}\] in equation (i)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = \dfrac{x}{{\left( {1 - {x^2}} \right)}}dx\] …..(ii)
Assume that, \[\left( {1 - {x^2}} \right) = z\]
Differentiate the above equation:
\[ - 2xdx = dz\]
Substitute \[\left( {1 - {x^2}} \right) = z\] and \[2xdx = dz\] in equation (ii)
\[ \Rightarrow \left( {\dfrac{1}{{y - 1}} - \dfrac{1}{y}} \right)dy = - \dfrac{1}{{2z}}dz\]
Apply antiderivative in the above equation
\[ \Rightarrow \int {\dfrac{1}{{y - 1}}dy} - \int {\dfrac{1}{y}dy} = - \int {\dfrac{1}{{2z}}dz} \]
\[ \Rightarrow \log \left| {y - 1} \right| - \log \left| y \right| = - \dfrac{1}{2}\log \left| z \right| + \log c\]
Multiply both sides by 2
\[ \Rightarrow 2\log \left| {y - 1} \right| - 2\log \left| y \right| = - \log \left| z \right| + 2\log c\]
Applying logarithm power rule
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| z \right| + \log {c^2}\]
Putting \[\left( {1 - {x^2}} \right) = z\]
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| - \log \left| {{y^2}} \right| = - \log \left| {1 - {x^2}} \right| + \log {c^2}\]
Rearrange the terms:
\[ \Rightarrow \log \left| {{{\left( {y - 1} \right)}^2}} \right| + \log \left| {1 - {x^2}} \right| = \log \left| {{y^2}} \right| + \log {c^2}\]
Now applying product rule of logarithm:
\[ \Rightarrow \log \left[ {{{\left( {y - 1} \right)}^2}\left( {1 - {x^2}} \right)} \right] = \log \left| {{y^2}{c^2}} \right|\]
\[ \Rightarrow {\left( {y - 1} \right)^2}\left( {1 - {x^2}} \right) = {y^2}{c^2}\]
Hence option B is the correct option.
Note: Students often take c as integrating constant. After solving the differential equation, we get that all terms are a logarithm function. Thus, we have to take \[\log c\] as an integrating constant.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

