
Small drops of mercury each of radius $r$ and change $q$ coalesce to form a big drop. The ratio of the surface charge density of each smell drop with that of big drop is
(A) $4:1$
(B) $1:4$
(C) $1:64$
(D) $64:1$
Answer
145.5k+ views
Hint Here we know the radius value of mercury and change so we find the large drop and small drop by using the formula ratio of surface density change according to some change in the formula for calculating the ratio than the volume of the small and large drops in the problem.
Useful formula:
The surface charge density formula is given by,
\[\sigma \; = \;\dfrac{q}{A}{\text{ }}\]
Where,
\[\sigma \;\]is surface charge density
$q$ is charge
$A$ is surface area
Complete step by step answer
Given by,
Let the radius of big drop $ = R$
Volume of the big drop $ = \dfrac{4}{3}\pi {R^3}$
Volume of a small drop $ = \dfrac{4}{3}\pi {r^3}$
Volume of $64$ small drops $ = 64 \times \dfrac{4}{3}\pi {r^3}$
Here the above equation is equal,
Volume of the big drop is equal to Volume of $64$ small drops
We get,
\[\dfrac{4}{3}\pi {r^3} = 64 \times \dfrac{4}{3}\pi {r^3}\]
Common factor is canceled,
Here,
${R^3} = 64{r^3}$
On simplifying,
$R = 4r$
Charge on a small drop $ = q$
Charge on a big drop$ = Q$
The value of $Q = 64q$
Small drop ${\sigma _1} = \dfrac{q}{{4\pi {r^2}}}$
Big drop \[{\sigma _2} = \dfrac{Q}{{4\pi {R^2}}}\]
Substituting the given value in above equation,
We get,
\[{\sigma _2} = \dfrac{{64q}}{{4\pi {{(4r)}^2}}}\]
On simplifying,
\[{\sigma _2} = \dfrac{{64q}}{{64\pi {r^2}}}\]
Common factor canceled,
\[{\sigma _2} = \dfrac{q}{{\pi {r^2}}}\]
According to the surface density,
Here,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{q}{{4\pi {r^2}}} \times \dfrac{q}{{\pi {r^2}}}\]
Again, the common factors are canceled,
We get,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{1}{4}\]
Hence,
\[{\sigma _1}:{\sigma _2} = 1:4\]
Thus, The option B is correct answer
Note Charging density is known, according to electromagnetism, as a measure of the electrical charge per unit volume of space in one, two or three dimensions. The linear surface or volume charge density is the quantity of electric charge per surface area or volume, to be specific.
Useful formula:
The surface charge density formula is given by,
\[\sigma \; = \;\dfrac{q}{A}{\text{ }}\]
Where,
\[\sigma \;\]is surface charge density
$q$ is charge
$A$ is surface area
Complete step by step answer
Given by,
Let the radius of big drop $ = R$
Volume of the big drop $ = \dfrac{4}{3}\pi {R^3}$
Volume of a small drop $ = \dfrac{4}{3}\pi {r^3}$
Volume of $64$ small drops $ = 64 \times \dfrac{4}{3}\pi {r^3}$
Here the above equation is equal,
Volume of the big drop is equal to Volume of $64$ small drops
We get,
\[\dfrac{4}{3}\pi {r^3} = 64 \times \dfrac{4}{3}\pi {r^3}\]
Common factor is canceled,
Here,
${R^3} = 64{r^3}$
On simplifying,
$R = 4r$
Charge on a small drop $ = q$
Charge on a big drop$ = Q$
The value of $Q = 64q$
Small drop ${\sigma _1} = \dfrac{q}{{4\pi {r^2}}}$
Big drop \[{\sigma _2} = \dfrac{Q}{{4\pi {R^2}}}\]
Substituting the given value in above equation,
We get,
\[{\sigma _2} = \dfrac{{64q}}{{4\pi {{(4r)}^2}}}\]
On simplifying,
\[{\sigma _2} = \dfrac{{64q}}{{64\pi {r^2}}}\]
Common factor canceled,
\[{\sigma _2} = \dfrac{q}{{\pi {r^2}}}\]
According to the surface density,
Here,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{q}{{4\pi {r^2}}} \times \dfrac{q}{{\pi {r^2}}}\]
Again, the common factors are canceled,
We get,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{1}{4}\]
Hence,
\[{\sigma _1}:{\sigma _2} = 1:4\]
Thus, The option B is correct answer
Note Charging density is known, according to electromagnetism, as a measure of the electrical charge per unit volume of space in one, two or three dimensions. The linear surface or volume charge density is the quantity of electric charge per surface area or volume, to be specific.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
