
Small drops of mercury each of radius $r$ and change $q$ coalesce to form a big drop. The ratio of the surface charge density of each smell drop with that of big drop is
(A) $4:1$
(B) $1:4$
(C) $1:64$
(D) $64:1$
Answer
216.3k+ views
Hint Here we know the radius value of mercury and change so we find the large drop and small drop by using the formula ratio of surface density change according to some change in the formula for calculating the ratio than the volume of the small and large drops in the problem.
Useful formula:
The surface charge density formula is given by,
\[\sigma \; = \;\dfrac{q}{A}{\text{ }}\]
Where,
\[\sigma \;\]is surface charge density
$q$ is charge
$A$ is surface area
Complete step by step answer
Given by,
Let the radius of big drop $ = R$
Volume of the big drop $ = \dfrac{4}{3}\pi {R^3}$
Volume of a small drop $ = \dfrac{4}{3}\pi {r^3}$
Volume of $64$ small drops $ = 64 \times \dfrac{4}{3}\pi {r^3}$
Here the above equation is equal,
Volume of the big drop is equal to Volume of $64$ small drops
We get,
\[\dfrac{4}{3}\pi {r^3} = 64 \times \dfrac{4}{3}\pi {r^3}\]
Common factor is canceled,
Here,
${R^3} = 64{r^3}$
On simplifying,
$R = 4r$
Charge on a small drop $ = q$
Charge on a big drop$ = Q$
The value of $Q = 64q$
Small drop ${\sigma _1} = \dfrac{q}{{4\pi {r^2}}}$
Big drop \[{\sigma _2} = \dfrac{Q}{{4\pi {R^2}}}\]
Substituting the given value in above equation,
We get,
\[{\sigma _2} = \dfrac{{64q}}{{4\pi {{(4r)}^2}}}\]
On simplifying,
\[{\sigma _2} = \dfrac{{64q}}{{64\pi {r^2}}}\]
Common factor canceled,
\[{\sigma _2} = \dfrac{q}{{\pi {r^2}}}\]
According to the surface density,
Here,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{q}{{4\pi {r^2}}} \times \dfrac{q}{{\pi {r^2}}}\]
Again, the common factors are canceled,
We get,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{1}{4}\]
Hence,
\[{\sigma _1}:{\sigma _2} = 1:4\]
Thus, The option B is correct answer
Note Charging density is known, according to electromagnetism, as a measure of the electrical charge per unit volume of space in one, two or three dimensions. The linear surface or volume charge density is the quantity of electric charge per surface area or volume, to be specific.
Useful formula:
The surface charge density formula is given by,
\[\sigma \; = \;\dfrac{q}{A}{\text{ }}\]
Where,
\[\sigma \;\]is surface charge density
$q$ is charge
$A$ is surface area
Complete step by step answer
Given by,
Let the radius of big drop $ = R$
Volume of the big drop $ = \dfrac{4}{3}\pi {R^3}$
Volume of a small drop $ = \dfrac{4}{3}\pi {r^3}$
Volume of $64$ small drops $ = 64 \times \dfrac{4}{3}\pi {r^3}$
Here the above equation is equal,
Volume of the big drop is equal to Volume of $64$ small drops
We get,
\[\dfrac{4}{3}\pi {r^3} = 64 \times \dfrac{4}{3}\pi {r^3}\]
Common factor is canceled,
Here,
${R^3} = 64{r^3}$
On simplifying,
$R = 4r$
Charge on a small drop $ = q$
Charge on a big drop$ = Q$
The value of $Q = 64q$
Small drop ${\sigma _1} = \dfrac{q}{{4\pi {r^2}}}$
Big drop \[{\sigma _2} = \dfrac{Q}{{4\pi {R^2}}}\]
Substituting the given value in above equation,
We get,
\[{\sigma _2} = \dfrac{{64q}}{{4\pi {{(4r)}^2}}}\]
On simplifying,
\[{\sigma _2} = \dfrac{{64q}}{{64\pi {r^2}}}\]
Common factor canceled,
\[{\sigma _2} = \dfrac{q}{{\pi {r^2}}}\]
According to the surface density,
Here,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{q}{{4\pi {r^2}}} \times \dfrac{q}{{\pi {r^2}}}\]
Again, the common factors are canceled,
We get,
\[\dfrac{{{\sigma _1}}}{{{\sigma _2}}} = \dfrac{1}{4}\]
Hence,
\[{\sigma _1}:{\sigma _2} = 1:4\]
Thus, The option B is correct answer
Note Charging density is known, according to electromagnetism, as a measure of the electrical charge per unit volume of space in one, two or three dimensions. The linear surface or volume charge density is the quantity of electric charge per surface area or volume, to be specific.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

