
How many six letter words be made out of the letters of ASSIST? In how many words the alphabet S alternates with other letters.
a) 120,6
b) 720,12
c) 120,12
d) 720,24
Answer
233.1k+ views
Hint: These types of questions involve the concept of permutation. First look at the letters we have got, see how many of them are the same and how many are unique so that we can have a fair idea about how many places we have to fill and then continue.
We have total 6 letters, out of which we have 3 S’s and 3 different letters i.e. ‘A’, ’I’ and ‘T’.
Since, we have 3 same letters, it would be easy to start with this
We can place all ‘S’s either at even places or at odd places i.e. we have 2 ways of placing ‘S’
∴ The remaining letters can be placed at the remaining places in 3! Ways i.e. 6 ways.
This is because if we fix ‘A’ at first place, then ‘I’ can have the rest of the two places, fixing ‘I’ at the second place, then ‘T’ is left with only one place which doesn’t need to be fixed. Same pattern follows if we fix ‘I’ in the first place. Thus we wrote 3!
∴ Total number of ways = 2×3!
=2×3×2×1
=12
Similarly, total no. of ways in which letter ‘S’ can be placed with other letters =5!
= 5×4×3×2×1
=120, 12
∴ Option ‘C’ is the right answer.
Note: Permutation of a set is an arrangement of its elements into a sequence or linear order, or if it is already ordered, a rearrangement of it’s elements. In this question also we rearranged the letters of the word ‘ASSIST’ which is acting as a set.
We have total 6 letters, out of which we have 3 S’s and 3 different letters i.e. ‘A’, ’I’ and ‘T’.
Since, we have 3 same letters, it would be easy to start with this
We can place all ‘S’s either at even places or at odd places i.e. we have 2 ways of placing ‘S’
∴ The remaining letters can be placed at the remaining places in 3! Ways i.e. 6 ways.
This is because if we fix ‘A’ at first place, then ‘I’ can have the rest of the two places, fixing ‘I’ at the second place, then ‘T’ is left with only one place which doesn’t need to be fixed. Same pattern follows if we fix ‘I’ in the first place. Thus we wrote 3!
∴ Total number of ways = 2×3!
=2×3×2×1
=12
Similarly, total no. of ways in which letter ‘S’ can be placed with other letters =5!
= 5×4×3×2×1
=120, 12
∴ Option ‘C’ is the right answer.
Note: Permutation of a set is an arrangement of its elements into a sequence or linear order, or if it is already ordered, a rearrangement of it’s elements. In this question also we rearranged the letters of the word ‘ASSIST’ which is acting as a set.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

