
Simplify \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\].
A. \[\sin 2\alpha \]
B. \[\cos 2\beta \]
C. \[\cos 2\alpha \]
D. \[\sin 2\beta \]
Answer
216.3k+ views
Hint: First we will apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] to simply the terms \[\cos \left( {\alpha + \beta } \right)\] and \[\cos 2\left( {\alpha + \beta } \right)\]. Then apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]. Apply the formulas \[2\sin x\cos x = \sin 2x\] and \[2{\sin ^2}x = 1 - \cos 2x\] to convert the given expression in \[\sin 2\alpha \], \[\sin 2\beta \], \[\cos 2\beta \], and \[\sin 2\beta \].
Formula Used:
\[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\]
Distributive property: \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[2\sin x\cos x = \sin 2x\]
\[2{\sin ^2}x = 1 - \cos 2x\]
Complete step by step solution:
Given expression is \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\]
\[ = 2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos \left( {2\alpha + 2\beta } \right)\]
Apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] in \[\cos \left( {\alpha + \beta } \right)\] and \[\cos \left( {2\alpha + 2\beta } \right)\].
\[ = 2{\sin ^2}\beta + 4\left( {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)\sin \alpha \sin \beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 2{\sin ^2}\beta + 4\cos \alpha \cos \beta \sin \alpha \sin \beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
\[ = 2{\sin ^2}\beta + \left( {2\cos \alpha \sin \alpha } \right)\left( {2\cos \beta \sin \beta } \right) - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the formula \[2\sin x\cos x= \sin 2x\]
\[ = 2{\sin ^2}\beta + \sin 2\alpha \sin 2\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta \]
Cancel out \[\sin 2\alpha \sin 2\beta \]
\[ = 2{\sin ^2}\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta \]
\[ = 2{\sin ^2}\beta - \left( {2{{\sin }^2}\alpha } \right)\left( {2{{\sin }^2}\beta } \right) + \cos 2\alpha \cos 2\beta \]
Now applying \[2{\sin ^2}x = 1 - \cos 2x\]
\[ = \left( {1 - \cos 2\beta } \right) - \left( {1 - \cos 2\alpha } \right)\left( {1 - \cos 2\beta } \right) + \cos 2\alpha \cos 2\beta \]
Apply distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 1 - \cos 2\beta - 1 + \cos 2\alpha + \cos 2\beta - \cos 2\beta \cos 2\alpha + \cos 2\alpha \cos 2\beta \]
Now cancel out 1, \[\cos 2\beta \], and \[\cos 2\alpha \cos 2\beta \]
\[ = \cos 2\alpha \]
Hence option C is the correct option.
Note: Students often confused with the formulas \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x + y} \right) = \cos x\cos y + \sin x\sin y\]. The correct formulas are \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y\].
Formula Used:
\[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\]
Distributive property: \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[2\sin x\cos x = \sin 2x\]
\[2{\sin ^2}x = 1 - \cos 2x\]
Complete step by step solution:
Given expression is \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\]
\[ = 2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos \left( {2\alpha + 2\beta } \right)\]
Apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] in \[\cos \left( {\alpha + \beta } \right)\] and \[\cos \left( {2\alpha + 2\beta } \right)\].
\[ = 2{\sin ^2}\beta + 4\left( {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)\sin \alpha \sin \beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 2{\sin ^2}\beta + 4\cos \alpha \cos \beta \sin \alpha \sin \beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
\[ = 2{\sin ^2}\beta + \left( {2\cos \alpha \sin \alpha } \right)\left( {2\cos \beta \sin \beta } \right) - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the formula \[2\sin x\cos x= \sin 2x\]
\[ = 2{\sin ^2}\beta + \sin 2\alpha \sin 2\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta \]
Cancel out \[\sin 2\alpha \sin 2\beta \]
\[ = 2{\sin ^2}\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta \]
\[ = 2{\sin ^2}\beta - \left( {2{{\sin }^2}\alpha } \right)\left( {2{{\sin }^2}\beta } \right) + \cos 2\alpha \cos 2\beta \]
Now applying \[2{\sin ^2}x = 1 - \cos 2x\]
\[ = \left( {1 - \cos 2\beta } \right) - \left( {1 - \cos 2\alpha } \right)\left( {1 - \cos 2\beta } \right) + \cos 2\alpha \cos 2\beta \]
Apply distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 1 - \cos 2\beta - 1 + \cos 2\alpha + \cos 2\beta - \cos 2\beta \cos 2\alpha + \cos 2\alpha \cos 2\beta \]
Now cancel out 1, \[\cos 2\beta \], and \[\cos 2\alpha \cos 2\beta \]
\[ = \cos 2\alpha \]
Hence option C is the correct option.
Note: Students often confused with the formulas \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x + y} \right) = \cos x\cos y + \sin x\sin y\]. The correct formulas are \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

