
Simplify \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\].
A. \[\sin 2\alpha \]
B. \[\cos 2\beta \]
C. \[\cos 2\alpha \]
D. \[\sin 2\beta \]
Answer
232.8k+ views
Hint: First we will apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] to simply the terms \[\cos \left( {\alpha + \beta } \right)\] and \[\cos 2\left( {\alpha + \beta } \right)\]. Then apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]. Apply the formulas \[2\sin x\cos x = \sin 2x\] and \[2{\sin ^2}x = 1 - \cos 2x\] to convert the given expression in \[\sin 2\alpha \], \[\sin 2\beta \], \[\cos 2\beta \], and \[\sin 2\beta \].
Formula Used:
\[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\]
Distributive property: \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[2\sin x\cos x = \sin 2x\]
\[2{\sin ^2}x = 1 - \cos 2x\]
Complete step by step solution:
Given expression is \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\]
\[ = 2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos \left( {2\alpha + 2\beta } \right)\]
Apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] in \[\cos \left( {\alpha + \beta } \right)\] and \[\cos \left( {2\alpha + 2\beta } \right)\].
\[ = 2{\sin ^2}\beta + 4\left( {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)\sin \alpha \sin \beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 2{\sin ^2}\beta + 4\cos \alpha \cos \beta \sin \alpha \sin \beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
\[ = 2{\sin ^2}\beta + \left( {2\cos \alpha \sin \alpha } \right)\left( {2\cos \beta \sin \beta } \right) - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the formula \[2\sin x\cos x= \sin 2x\]
\[ = 2{\sin ^2}\beta + \sin 2\alpha \sin 2\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta \]
Cancel out \[\sin 2\alpha \sin 2\beta \]
\[ = 2{\sin ^2}\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta \]
\[ = 2{\sin ^2}\beta - \left( {2{{\sin }^2}\alpha } \right)\left( {2{{\sin }^2}\beta } \right) + \cos 2\alpha \cos 2\beta \]
Now applying \[2{\sin ^2}x = 1 - \cos 2x\]
\[ = \left( {1 - \cos 2\beta } \right) - \left( {1 - \cos 2\alpha } \right)\left( {1 - \cos 2\beta } \right) + \cos 2\alpha \cos 2\beta \]
Apply distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 1 - \cos 2\beta - 1 + \cos 2\alpha + \cos 2\beta - \cos 2\beta \cos 2\alpha + \cos 2\alpha \cos 2\beta \]
Now cancel out 1, \[\cos 2\beta \], and \[\cos 2\alpha \cos 2\beta \]
\[ = \cos 2\alpha \]
Hence option C is the correct option.
Note: Students often confused with the formulas \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x + y} \right) = \cos x\cos y + \sin x\sin y\]. The correct formulas are \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y\].
Formula Used:
\[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\]
Distributive property: \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[2\sin x\cos x = \sin 2x\]
\[2{\sin ^2}x = 1 - \cos 2x\]
Complete step by step solution:
Given expression is \[2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos 2\left( {\alpha + \beta } \right)\]
\[ = 2{\sin ^2}\beta + 4\cos \left( {\alpha + \beta } \right)\sin \alpha \sin \beta + \cos \left( {2\alpha + 2\beta } \right)\]
Apply the formula \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] in \[\cos \left( {\alpha + \beta } \right)\] and \[\cos \left( {2\alpha + 2\beta } \right)\].
\[ = 2{\sin ^2}\beta + 4\left( {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)\sin \alpha \sin \beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 2{\sin ^2}\beta + 4\cos \alpha \cos \beta \sin \alpha \sin \beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
\[ = 2{\sin ^2}\beta + \left( {2\cos \alpha \sin \alpha } \right)\left( {2\cos \beta \sin \beta } \right) - 4{\sin ^2}\alpha {\sin ^2}\beta + \left( {\cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta } \right)\]
Apply the formula \[2\sin x\cos x= \sin 2x\]
\[ = 2{\sin ^2}\beta + \sin 2\alpha \sin 2\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta - \sin 2\alpha \sin 2\beta \]
Cancel out \[\sin 2\alpha \sin 2\beta \]
\[ = 2{\sin ^2}\beta - 4{\sin ^2}\alpha {\sin ^2}\beta + \cos 2\alpha \cos 2\beta \]
\[ = 2{\sin ^2}\beta - \left( {2{{\sin }^2}\alpha } \right)\left( {2{{\sin }^2}\beta } \right) + \cos 2\alpha \cos 2\beta \]
Now applying \[2{\sin ^2}x = 1 - \cos 2x\]
\[ = \left( {1 - \cos 2\beta } \right) - \left( {1 - \cos 2\alpha } \right)\left( {1 - \cos 2\beta } \right) + \cos 2\alpha \cos 2\beta \]
Apply distributive property \[a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c\]
\[ = 1 - \cos 2\beta - 1 + \cos 2\alpha + \cos 2\beta - \cos 2\beta \cos 2\alpha + \cos 2\alpha \cos 2\beta \]
Now cancel out 1, \[\cos 2\beta \], and \[\cos 2\alpha \cos 2\beta \]
\[ = \cos 2\alpha \]
Hence option C is the correct option.
Note: Students often confused with the formulas \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x + y} \right) = \cos x\cos y + \sin x\sin y\]. The correct formulas are \[\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\] and \[\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

