
What is the relation between $Q$ and $q$ for which the potential at center of the square is zero. It is given that, four – point charges $ - Q, - q,2q$ and $2Q$ are placed one at each corner of the square.
(A) $Q = q$
(B) $Q = \dfrac{1}{q}$
(C) $Q = - q$
(D) $Q = - \dfrac{1}{q}$
Answer
164.4k+ views
Hint: Construct the square illustrating the four charges at each corner. Now, use the formula of potential difference for each charge and add them with each other and make them equal to zero.
Formula used The potential difference of the system for a point charge can be calculated by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
where, $Q$ is the charge, and
$r$ is the distance of point
Complete Step by Step Solution
According to the question, it is given that, there are four – point charges $ - Q, - q,2q$ and $2Q$ which are placed at each corner of the square. So, this can be illustrated in the figure as below –

Let the side of the square be $a$ then, the length of each corner from the center will be $\dfrac{a}{{\sqrt 2 }}$.
Now, we know that, the potential difference of the system can be given by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
As, $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is constant. So, let $\dfrac{1}{{4\pi {\varepsilon _0}}}$ be $K$
Hence, -
$ \Rightarrow V = \dfrac{{KQ}}{r}$
Now, the potential at the centre of square from each charge can be given by –
$V = \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}}$
As it is given in question that potential at centre of square is equal to zero. So, $V = 0$
$
\therefore \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} = 0 \\
\Rightarrow - KQ - Kq + 2Kq + 2Kq = 0 \\
\Rightarrow Kq + KQ = 0 \\
\therefore Q = - q \\
$
Now, we got the relation between the charges $Q$ and $q$ as $Q = - q$.
Hence, the correct option is (C).
Note: Potential difference between two points is the work done in moving a unit positive charge between the two points. Its S.I unit is V.
The diagonal of the square can be calculated by multiplying the side of the square with $\sqrt 2 $. So, the length of each corner from the centre of square will be –
$
\Rightarrow \dfrac{{a\sqrt 2 }}{2} \\
\therefore \dfrac{a}{{\sqrt 2 }} \\
$
$\dfrac{a}{{\sqrt 2 }}$ is equal to the half of the diagonal of the square.
Formula used The potential difference of the system for a point charge can be calculated by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
where, $Q$ is the charge, and
$r$ is the distance of point
Complete Step by Step Solution
According to the question, it is given that, there are four – point charges $ - Q, - q,2q$ and $2Q$ which are placed at each corner of the square. So, this can be illustrated in the figure as below –

Let the side of the square be $a$ then, the length of each corner from the center will be $\dfrac{a}{{\sqrt 2 }}$.
Now, we know that, the potential difference of the system can be given by the formula –
$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$
As, $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is constant. So, let $\dfrac{1}{{4\pi {\varepsilon _0}}}$ be $K$
Hence, -
$ \Rightarrow V = \dfrac{{KQ}}{r}$
Now, the potential at the centre of square from each charge can be given by –
$V = \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}}$
As it is given in question that potential at centre of square is equal to zero. So, $V = 0$
$
\therefore \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} = 0 \\
\Rightarrow - KQ - Kq + 2Kq + 2Kq = 0 \\
\Rightarrow Kq + KQ = 0 \\
\therefore Q = - q \\
$
Now, we got the relation between the charges $Q$ and $q$ as $Q = - q$.
Hence, the correct option is (C).
Note: Potential difference between two points is the work done in moving a unit positive charge between the two points. Its S.I unit is V.
The diagonal of the square can be calculated by multiplying the side of the square with $\sqrt 2 $. So, the length of each corner from the centre of square will be –
$
\Rightarrow \dfrac{{a\sqrt 2 }}{2} \\
\therefore \dfrac{a}{{\sqrt 2 }} \\
$
$\dfrac{a}{{\sqrt 2 }}$ is equal to the half of the diagonal of the square.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
