Answer

Verified

78.3k+ views

**Hint:**Construct the square illustrating the four charges at each corner. Now, use the formula of potential difference for each charge and add them with each other and make them equal to zero.

**Formula used**The potential difference of the system for a point charge can be calculated by the formula –

$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$

where, $Q$ is the charge, and

$r$ is the distance of point

**Complete Step by Step Solution**

According to the question, it is given that, there are four – point charges $ - Q, - q,2q$ and $2Q$ which are placed at each corner of the square. So, this can be illustrated in the figure as below –

Let the side of the square be $a$ then, the length of each corner from the center will be $\dfrac{a}{{\sqrt 2 }}$.

Now, we know that, the potential difference of the system can be given by the formula –

$V = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{r}$

As, $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is constant. So, let $\dfrac{1}{{4\pi {\varepsilon _0}}}$ be $K$

Hence, -

$ \Rightarrow V = \dfrac{{KQ}}{r}$

Now, the potential at the centre of square from each charge can be given by –

$V = \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}}$

As it is given in question that potential at centre of square is equal to zero. So, $V = 0$

$

\therefore \dfrac{{K\left( { - Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( { - q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} + \dfrac{{K\left( {2Q} \right)}}{{\dfrac{a}{{\sqrt 2 }}}} = 0 \\

\Rightarrow - KQ - Kq + 2Kq + 2Kq = 0 \\

\Rightarrow Kq + KQ = 0 \\

\therefore Q = - q \\

$

Now, we got the relation between the charges $Q$ and $q$ as $Q = - q$.

**Hence, the correct option is (C).**

**Note:**Potential difference between two points is the work done in moving a unit positive charge between the two points. Its S.I unit is V.

The diagonal of the square can be calculated by multiplying the side of the square with $\sqrt 2 $. So, the length of each corner from the centre of square will be –

$

\Rightarrow \dfrac{{a\sqrt 2 }}{2} \\

\therefore \dfrac{a}{{\sqrt 2 }} \\

$

$\dfrac{a}{{\sqrt 2 }}$ is equal to the half of the diagonal of the square.

Recently Updated Pages

Name the scale on which the destructive energy of an class 11 physics JEE_Main

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main