
Range of resistivity for metals is?
(A)${10^{ - 6}}\Omega m$ to ${10^{ - 4}}\Omega m$
(B) ${10^{ - 7}}\Omega m$ to ${10^{ - 5}}\Omega m$
(C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$
(D) ${10^{ - 9}}\Omega m$ to ${10^{ - 7}}\Omega m$
Answer
219.3k+ views
Hint: Metals are good conductors of electricity, hence they have smaller resistivity compared to nonmetals and metalloids. The accurate answer to this question can’t be found using logic. The answer to this question must be remembered.
Complete step by step solution:
This is a fact-based question so one must remember that the range of resistivity for metals is ${10^{ - 8}}\Omega m$ to ${10^{ - 6}}\Omega m$.
Hence, the correct answer is option (C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$.
Additional information:
Resistivity is the property of a material that depicts how strongly it resists the flow of electrons through it.
A conductor is a type of material that allows the flow of charge (electric current) in one or more directions as electrons are loosely bonded to the atom. Materials made of metal are common electric conductors.
An electric insulator is a material in which the electron does not flow freely as it has its electrons tightly bonded to the atoms; a very small amount of current will flow through it under the influence of an electric field.
The range of resistivity of an insulator is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
There’s one more type of material known as semiconductor ${10^{12}}\Omega m$ to ${10^{20}}\Omega m$
The semiconductor material is a material that has an electric resistivity value lying between that of a conductor, such as metallic copper, and an insulator, such as wood. Its resistivity falls as its temperature rises which are opposite to that of metals as in them as the temperature increases the number of charge carriers also increases leading to less resistivity.
The range of resistivity of semiconductors is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
Note:
The order of resistivity of metal, nonmetal, and semiconductor is in the order of insulator>semiconductor>metal. This all happens due to the atom’s ability to bind the electron; this determines the energy in the atom that prevents the electron from moving under an external electric field.
Complete step by step solution:
This is a fact-based question so one must remember that the range of resistivity for metals is ${10^{ - 8}}\Omega m$ to ${10^{ - 6}}\Omega m$.
Hence, the correct answer is option (C) ${10^{ - 8}}\Omega m$to ${10^{ - 6}}\Omega m$.
Additional information:
Resistivity is the property of a material that depicts how strongly it resists the flow of electrons through it.
A conductor is a type of material that allows the flow of charge (electric current) in one or more directions as electrons are loosely bonded to the atom. Materials made of metal are common electric conductors.
An electric insulator is a material in which the electron does not flow freely as it has its electrons tightly bonded to the atoms; a very small amount of current will flow through it under the influence of an electric field.
The range of resistivity of an insulator is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
There’s one more type of material known as semiconductor ${10^{12}}\Omega m$ to ${10^{20}}\Omega m$
The semiconductor material is a material that has an electric resistivity value lying between that of a conductor, such as metallic copper, and an insulator, such as wood. Its resistivity falls as its temperature rises which are opposite to that of metals as in them as the temperature increases the number of charge carriers also increases leading to less resistivity.
The range of resistivity of semiconductors is ${10^{ - 4}}\Omega cm$ of heavily doped to ${10^3}\Omega cm$ of an undoped or intrinsic semiconductor.
Note:
The order of resistivity of metal, nonmetal, and semiconductor is in the order of insulator>semiconductor>metal. This all happens due to the atom’s ability to bind the electron; this determines the energy in the atom that prevents the electron from moving under an external electric field.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

