
Radius of the curved road on the national highway is $R$. Width of the road is $b$. The outer edge of the road is raised by $h$ with respect to the inner edge so that a car with velocity $v$ can pass safely over it. The value of $h$ is
(A) $\dfrac{{{v^2}b}}{{Rg}}$
(B) $\dfrac{v}{{Rgb}}$
(C) $\dfrac{{{v^2}R}}{{bg}}$
(D) $\dfrac{{{v^2}b}}{R}$
Answer
222.9k+ views
Hint: In this question we must apply the concept of equilibrium of the moving bodies. A body will be in equilibrium if all the forces acting on that body or object are balanced. In this question the centripetal force and the contact forces are to balance.
Complete step by step answer:
In this question, we have given the radius of the curved road is $R$, the width of the road is $b$, the outer edge of the road is raised by $h$ with respect to the inner edge, and the velocity of the car is $v$. We need to calculate the value of $h$.
First, we will draw the diagram based on the situation given in the question is shown below,

Figure-(1)
In the above diagram, $N$ represents the normal reaction of the car and the slope angle is $\theta $.
Now, we apply the concept of equilibrium for horizontal forces as well as the vertical forces.
From the above diagram, the horizontal forces can be balanced as,
$ \Rightarrow N\sin \theta = \dfrac{{m{v^2}}}{R}......\left( 1 \right)$
Here, $N$ is the normal force, $R$ is the radius of the road, $v$ is the velocity, $m$ is the mass of the vehicle and $\theta $ is the angle between the elevations of the road from the horizontal.
Similarly, the vertical forces can be balanced as,
$ \Rightarrow N\cos \theta = mg......\left( 2 \right)$
Now we divide equation (1) by equation (2) as,
$ \Rightarrow \dfrac{{N\sin \theta }}{{N\cos \theta }} = \dfrac{{\dfrac{{m{v^2}}}{R}}}{{mg}}$
Further, we solve the above equation.
$ \Rightarrow \tan \theta = \dfrac{{{v^2}}}{{Rg}}......\left( 3 \right)$
Now we calculate $\tan \theta $ from the diagram.
$ \Rightarrow \tan \theta = \dfrac{h}{b}......\left( 4 \right)$
Here, $h$ is the height of the road and $b$ is the width of road.
Now we compare equation (3) and (4) as,
$ \Rightarrow \dfrac{h}{b} = \dfrac{{{v^2}}}{{Rg}}$
After simplification we get,
$\therefore h = \dfrac{{{v^2}b}}{{Rg}}$
Therefore, the correct option is A.
Note: In this question, diagram plays an important role in the calculation. So, the diagrams should be made carefully. While balancing the forces it is necessary to look at the sign of forces because difference in sign will lead to wrong answers.
Complete step by step answer:
In this question, we have given the radius of the curved road is $R$, the width of the road is $b$, the outer edge of the road is raised by $h$ with respect to the inner edge, and the velocity of the car is $v$. We need to calculate the value of $h$.
First, we will draw the diagram based on the situation given in the question is shown below,

Figure-(1)
In the above diagram, $N$ represents the normal reaction of the car and the slope angle is $\theta $.
Now, we apply the concept of equilibrium for horizontal forces as well as the vertical forces.
From the above diagram, the horizontal forces can be balanced as,
$ \Rightarrow N\sin \theta = \dfrac{{m{v^2}}}{R}......\left( 1 \right)$
Here, $N$ is the normal force, $R$ is the radius of the road, $v$ is the velocity, $m$ is the mass of the vehicle and $\theta $ is the angle between the elevations of the road from the horizontal.
Similarly, the vertical forces can be balanced as,
$ \Rightarrow N\cos \theta = mg......\left( 2 \right)$
Now we divide equation (1) by equation (2) as,
$ \Rightarrow \dfrac{{N\sin \theta }}{{N\cos \theta }} = \dfrac{{\dfrac{{m{v^2}}}{R}}}{{mg}}$
Further, we solve the above equation.
$ \Rightarrow \tan \theta = \dfrac{{{v^2}}}{{Rg}}......\left( 3 \right)$
Now we calculate $\tan \theta $ from the diagram.
$ \Rightarrow \tan \theta = \dfrac{h}{b}......\left( 4 \right)$
Here, $h$ is the height of the road and $b$ is the width of road.
Now we compare equation (3) and (4) as,
$ \Rightarrow \dfrac{h}{b} = \dfrac{{{v^2}}}{{Rg}}$
After simplification we get,
$\therefore h = \dfrac{{{v^2}b}}{{Rg}}$
Therefore, the correct option is A.
Note: In this question, diagram plays an important role in the calculation. So, the diagrams should be made carefully. While balancing the forces it is necessary to look at the sign of forces because difference in sign will lead to wrong answers.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

