
Radius of the curved road on the national highway is $R$. Width of the road is $b$. The outer edge of the road is raised by $h$ with respect to the inner edge so that a car with velocity $v$ can pass safely over it. The value of $h$ is
(A) $\dfrac{{{v^2}b}}{{Rg}}$
(B) $\dfrac{v}{{Rgb}}$
(C) $\dfrac{{{v^2}R}}{{bg}}$
(D) $\dfrac{{{v^2}b}}{R}$
Answer
136.2k+ views
Hint: In this question we must apply the concept of equilibrium of the moving bodies. A body will be in equilibrium if all the forces acting on that body or object are balanced. In this question the centripetal force and the contact forces are to balance.
Complete step by step answer:
In this question, we have given the radius of the curved road is $R$, the width of the road is $b$, the outer edge of the road is raised by $h$ with respect to the inner edge, and the velocity of the car is $v$. We need to calculate the value of $h$.
First, we will draw the diagram based on the situation given in the question is shown below,

Figure-(1)
In the above diagram, $N$ represents the normal reaction of the car and the slope angle is $\theta $.
Now, we apply the concept of equilibrium for horizontal forces as well as the vertical forces.
From the above diagram, the horizontal forces can be balanced as,
$ \Rightarrow N\sin \theta = \dfrac{{m{v^2}}}{R}......\left( 1 \right)$
Here, $N$ is the normal force, $R$ is the radius of the road, $v$ is the velocity, $m$ is the mass of the vehicle and $\theta $ is the angle between the elevations of the road from the horizontal.
Similarly, the vertical forces can be balanced as,
$ \Rightarrow N\cos \theta = mg......\left( 2 \right)$
Now we divide equation (1) by equation (2) as,
$ \Rightarrow \dfrac{{N\sin \theta }}{{N\cos \theta }} = \dfrac{{\dfrac{{m{v^2}}}{R}}}{{mg}}$
Further, we solve the above equation.
$ \Rightarrow \tan \theta = \dfrac{{{v^2}}}{{Rg}}......\left( 3 \right)$
Now we calculate $\tan \theta $ from the diagram.
$ \Rightarrow \tan \theta = \dfrac{h}{b}......\left( 4 \right)$
Here, $h$ is the height of the road and $b$ is the width of road.
Now we compare equation (3) and (4) as,
$ \Rightarrow \dfrac{h}{b} = \dfrac{{{v^2}}}{{Rg}}$
After simplification we get,
$\therefore h = \dfrac{{{v^2}b}}{{Rg}}$
Therefore, the correct option is A.
Note: In this question, diagram plays an important role in the calculation. So, the diagrams should be made carefully. While balancing the forces it is necessary to look at the sign of forces because difference in sign will lead to wrong answers.
Complete step by step answer:
In this question, we have given the radius of the curved road is $R$, the width of the road is $b$, the outer edge of the road is raised by $h$ with respect to the inner edge, and the velocity of the car is $v$. We need to calculate the value of $h$.
First, we will draw the diagram based on the situation given in the question is shown below,

Figure-(1)
In the above diagram, $N$ represents the normal reaction of the car and the slope angle is $\theta $.
Now, we apply the concept of equilibrium for horizontal forces as well as the vertical forces.
From the above diagram, the horizontal forces can be balanced as,
$ \Rightarrow N\sin \theta = \dfrac{{m{v^2}}}{R}......\left( 1 \right)$
Here, $N$ is the normal force, $R$ is the radius of the road, $v$ is the velocity, $m$ is the mass of the vehicle and $\theta $ is the angle between the elevations of the road from the horizontal.
Similarly, the vertical forces can be balanced as,
$ \Rightarrow N\cos \theta = mg......\left( 2 \right)$
Now we divide equation (1) by equation (2) as,
$ \Rightarrow \dfrac{{N\sin \theta }}{{N\cos \theta }} = \dfrac{{\dfrac{{m{v^2}}}{R}}}{{mg}}$
Further, we solve the above equation.
$ \Rightarrow \tan \theta = \dfrac{{{v^2}}}{{Rg}}......\left( 3 \right)$
Now we calculate $\tan \theta $ from the diagram.
$ \Rightarrow \tan \theta = \dfrac{h}{b}......\left( 4 \right)$
Here, $h$ is the height of the road and $b$ is the width of road.
Now we compare equation (3) and (4) as,
$ \Rightarrow \dfrac{h}{b} = \dfrac{{{v^2}}}{{Rg}}$
After simplification we get,
$\therefore h = \dfrac{{{v^2}b}}{{Rg}}$
Therefore, the correct option is A.
Note: In this question, diagram plays an important role in the calculation. So, the diagrams should be made carefully. While balancing the forces it is necessary to look at the sign of forces because difference in sign will lead to wrong answers.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
