
Prove work energy theorem for a constant force.
Answer
216.3k+ views
Hint: Work energy theorem gives the relation between work done and energy. According to the work energy theorem, the net work done on a body is equal to the change in the kinetic energy of the body.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

