
One end of a v tube containing mercury is connected to a suction pump and the other end to the atmosphere. the two arms of the tube are inclined to horizontal at an angle of $45^\circ $ each. A small pressure difference is created between two columns when the suction pump is removed. Will the column of mercury in the v tube execute simple harmonic motion? Neglect capillary and viscous forces. Find the time period of oscillation?
Answer
140.7k+ views
Hint: Simple harmonic motion is a special type of periodic motion in which the restoring force is directly proportional to the displacement of the body from its mean position. The direction of this restoring force is always directed to the mean position.
Complete step by step solution:
Let’s assume that the length of the liquid column in each arm of the v-tube is in equilibrium position to be $'l'$. Also let $'\rho '$ be the density of the mercury in the v- tube and $'A'$ be the area of the cross section of the liquid column.
If the distance pushed by mercury in one arm of the v-tube is $'x'$ then the level of mercury in the other arm will be raised by $'x'$.
The pressure difference experienced due to the difference in level of mercury in v-tube will be;
$\Delta P = 2x(\sin 45^\circ )\rho g$
The thrust perpendicular to the liquid meniscus in the v-tube is;
$F = - \dfrac{{(\Delta P)A}}{{\cos 45^\circ }} = - 2\rho gAx - - - - - (1)$
From (1) we can conclude that
$F = - kx$
$F \propto ( - x)$
Which shows that the motion is in simple harmonic motion(shm)
So, $k = 2\rho gA$
Time period $T = 2\pi \sqrt {\frac{m}{k}} = 2\pi \sqrt {\dfrac{{2lA\rho }}{{2\rho gA}}} = 2\pi \sqrt {\dfrac{l}{g}} $
$\therefore $Time period of oscillation$ = 2\pi \sqrt {\dfrac{l}{g}} $
Note:
All the simple harmonic motions are oscillatory and periodic but all oscillatory motions are not simple harmonic. Simple harmonic motion is also a type of oscillatory motion where the acceleration of the particle at any position is always directly proportional to the displacement from the mean position
Complete step by step solution:
Let’s assume that the length of the liquid column in each arm of the v-tube is in equilibrium position to be $'l'$. Also let $'\rho '$ be the density of the mercury in the v- tube and $'A'$ be the area of the cross section of the liquid column.
If the distance pushed by mercury in one arm of the v-tube is $'x'$ then the level of mercury in the other arm will be raised by $'x'$.
The pressure difference experienced due to the difference in level of mercury in v-tube will be;
$\Delta P = 2x(\sin 45^\circ )\rho g$
The thrust perpendicular to the liquid meniscus in the v-tube is;
$F = - \dfrac{{(\Delta P)A}}{{\cos 45^\circ }} = - 2\rho gAx - - - - - (1)$
From (1) we can conclude that
$F = - kx$
$F \propto ( - x)$
Which shows that the motion is in simple harmonic motion(shm)
So, $k = 2\rho gA$
Time period $T = 2\pi \sqrt {\frac{m}{k}} = 2\pi \sqrt {\dfrac{{2lA\rho }}{{2\rho gA}}} = 2\pi \sqrt {\dfrac{l}{g}} $
$\therefore $Time period of oscillation$ = 2\pi \sqrt {\dfrac{l}{g}} $
Note:
All the simple harmonic motions are oscillatory and periodic but all oscillatory motions are not simple harmonic. Simple harmonic motion is also a type of oscillatory motion where the acceleration of the particle at any position is always directly proportional to the displacement from the mean position
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
