
N atom in \[NH_{4}^{+}\] ion involves the hybridization:
(A) \[sp\]
(B) \[s{{p}^{2}}\]
(C) \[s{{p}^{3}}\]
(D) \[s{{p}^{3}}d\]
Answer
451.2k+ views
Hint: We can find the hybridization and shape of the molecules using VSEPR (Valence Shell Electron Pair Repulsion) theory. According to VSEPR theory each atom present in a molecule achieves geometry that reduces the repulsions between electrons present in the valence shell of that particular atom.
Complete step by step answer:
The given molecule in the question is \[NH_{4}^{+}\] (Ammonium ion).
The formation of Ammonium ion is as follows.
\[N{{H}_{3}}+{{H}^{+}}\to NH_{4}^{+}\]
We can represent the above equation in the form of structure as follows.

According to VSEPR theory we can find the hybridization of atoms in a molecule by the summation of the number of lone pairs of electrons and the number of sigma bonds.
Ammonia reacts with hydrogen ions and forms ammonium cation as the product by donating a lone pair of electrons.
In the structure of the ammonium cation we can say that nitrogen atom has four sigma bonds with four hydrogen atoms.
The ammonium does not contain any lone pair of electrons in its structure.
Means Nitrogen atom in Ammonium ion has only four bonding orbitals or 4 sigma bonds.
Therefore the hybridization of Nitrogen (N) in ammonium ion is \[s{{p}^{3}}\].
So, the correct option is C.
Note: The hybridization of nitrogen atom in ammonia is also \[s{{p}^{3}}\]. Because the nitrogen present in ammonia molecules has three sigma bonds and one lone pair of electrons.
Therefore total number orbitals = Bonding orbitals + lone pair of electrons
=3+1
= 4
So, the hybridization of nitrogen in ammonia is \[s{{p}^{3}}\]
Complete step by step answer:
The given molecule in the question is \[NH_{4}^{+}\] (Ammonium ion).
The formation of Ammonium ion is as follows.
\[N{{H}_{3}}+{{H}^{+}}\to NH_{4}^{+}\]
We can represent the above equation in the form of structure as follows.

According to VSEPR theory we can find the hybridization of atoms in a molecule by the summation of the number of lone pairs of electrons and the number of sigma bonds.
Ammonia reacts with hydrogen ions and forms ammonium cation as the product by donating a lone pair of electrons.
In the structure of the ammonium cation we can say that nitrogen atom has four sigma bonds with four hydrogen atoms.
The ammonium does not contain any lone pair of electrons in its structure.
Means Nitrogen atom in Ammonium ion has only four bonding orbitals or 4 sigma bonds.
Therefore the hybridization of Nitrogen (N) in ammonium ion is \[s{{p}^{3}}\].
So, the correct option is C.
Note: The hybridization of nitrogen atom in ammonia is also \[s{{p}^{3}}\]. Because the nitrogen present in ammonia molecules has three sigma bonds and one lone pair of electrons.
Therefore total number orbitals = Bonding orbitals + lone pair of electrons
=3+1
= 4
So, the hybridization of nitrogen in ammonia is \[s{{p}^{3}}\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

The stability of the following alkali metal chlorides class 11 chemistry JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE
