
Motion in a plane is also known as-
A. One dimensional motion
B. Two dimensional motion
C. Three dimensional motion
D. None of the above
Answer
219k+ views
Hint: Since a plane is made up of two dimensions, when we discuss motion in a plane, we are speaking of motion in two dimensions. As a result, we are generally considering the X-axis and the Y-axis.
Complete step by step solution:
Motion in a plane: It is possible to think of motion in a plane as two distinct one-dimensional motions with constant acceleration and two perpendicular directions. A vector that is supplied in two dimensions will have two components. As an illustration, assume that an item travelling on a two-dimensional plane has a velocity of ${{v}_{0}}$ at time (t) = 0 and v at time t.
The equations for motion in a plane would be as follows:
${{v}_{x}}={{u}_{x}}+{{a}_{x}}t$
$\Rightarrow {{S}_{x}}={{u}_{x}}+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$
$\Rightarrow v_{x}^{2}=u_{x}^{2}+2{{a}_{x}}s$
The acceleration is given by:
$a=\dfrac{v-{{v}_{0}}}{t}$
In terms of x components is given by:
$\Rightarrow {{v}_{x}}={{v}_{0x}}-{{a}_{x}}t$
Projectile Motion: A body that has been launched with some initial velocity in any direction and is subsequently permitted to move solely as a result of gravity is referred to as a projectile. A trajectory is the name given to the path taken by the bullet. Examples include a football that a player kicks, a stone hurled from a building's roof, and a bomb dropped from a plane.
The projectile is propelled by two velocities:
- a constant, homogeneous velocity in the horizontal direction (if there is no air resistance)
- a consistently varying vertical velocity brought on by gravity.
Therefore, we can say that motion in a plane is also known as two- dimensional motion.
Hence, option B is the correct answer.
Note:When a projectile is shot from the ground, it travels a horizontal distance that is equal to half of the range before reaching its maximum height. At the highest point of the trajectory, the projectile has net velocity in the horizontal direction since its velocity is minimal but not zero and equal to u cosθ (vertical component is zero). Since there is no acceleration in the horizontal direction, the horizontal component of velocity also stays constant at zero.
Complete step by step solution:
Motion in a plane: It is possible to think of motion in a plane as two distinct one-dimensional motions with constant acceleration and two perpendicular directions. A vector that is supplied in two dimensions will have two components. As an illustration, assume that an item travelling on a two-dimensional plane has a velocity of ${{v}_{0}}$ at time (t) = 0 and v at time t.
The equations for motion in a plane would be as follows:
${{v}_{x}}={{u}_{x}}+{{a}_{x}}t$
$\Rightarrow {{S}_{x}}={{u}_{x}}+\dfrac{1}{2}{{a}_{x}}{{t}^{2}}$
$\Rightarrow v_{x}^{2}=u_{x}^{2}+2{{a}_{x}}s$
The acceleration is given by:
$a=\dfrac{v-{{v}_{0}}}{t}$
In terms of x components is given by:
$\Rightarrow {{v}_{x}}={{v}_{0x}}-{{a}_{x}}t$
Projectile Motion: A body that has been launched with some initial velocity in any direction and is subsequently permitted to move solely as a result of gravity is referred to as a projectile. A trajectory is the name given to the path taken by the bullet. Examples include a football that a player kicks, a stone hurled from a building's roof, and a bomb dropped from a plane.
The projectile is propelled by two velocities:
- a constant, homogeneous velocity in the horizontal direction (if there is no air resistance)
- a consistently varying vertical velocity brought on by gravity.
Therefore, we can say that motion in a plane is also known as two- dimensional motion.
Hence, option B is the correct answer.
Note:When a projectile is shot from the ground, it travels a horizontal distance that is equal to half of the range before reaching its maximum height. At the highest point of the trajectory, the projectile has net velocity in the horizontal direction since its velocity is minimal but not zero and equal to u cosθ (vertical component is zero). Since there is no acceleration in the horizontal direction, the horizontal component of velocity also stays constant at zero.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

