
Mechanics and Newton's motion laws as ............... laws depended.
A. linear momentum
B. Energy conservation
C. Gravitational
D. Charge conservation
Answer
218.4k+ views
Hint: Concept of Newton's laws of motion are required to solve this question. The three fundamental laws of classical mechanics known as Newton's laws of motion describe how an object's motion and the forces acting on it interact.
Complete step by step solution:
Newton's 1st law: Every object in a straight line unless acted upon by a force.
Newton's 2nd law: The acceleration of an object is directly proportional to the net force exerted and inversely proportional to the object’s mass.
Newton's 3rd law: For every action, there is an equal and opposite reaction.
A. linear momentum: The product of an object's mass, m, and its velocity, \[v\] v, is the vector quantity known as linear momentum. It is represented by the letter "\[p\] ," which is also used to denote momentum. Please be aware that the body's momentum always points in the same direction as its vector of velocity. Because it is a conserved quantity, a system's overall momentum is always constant.
B. Energy conservation: A fundamental principle of physics and chemistry states that despite internal changes, the overall energy of an isolated system remains constant. It is the underlying principle of the first law of thermodynamics, which is most frequently stated as "energy cannot be generated or destroyed."
C. Gravitational:Newton’s law of gravitation, states that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them. In symbols, the magnitude of the attractive force \[F\] is equal to \[G\] (the gravitational constant, a number the size of which depends on the system of units used and which is a universal constant) multiplied by the product of the masses (\[{m_1}\] and \[{m_2}\] ) and divided by the square of the distance \[r\]:\[F\; = \;\dfrac{{G({m_1}{m_2})}}{{{r^2}}}\]
D. Charge conservation: Charge conservation in physics states that an isolated system's total electric charge never changes. The universe's net electric charge, which is equal to the sum of positive and negative charges, is always preserved.
Hence, the correct option is C.
Note:With the exception of very small entities like electrons or those moving nearly at the speed of light, Newton's equations continue to accurately describe nature. Newton's rules are what quantum mechanics and relativity come down to for larger or slower moving objects.
Complete step by step solution:
Newton's 1st law: Every object in a straight line unless acted upon by a force.
Newton's 2nd law: The acceleration of an object is directly proportional to the net force exerted and inversely proportional to the object’s mass.
Newton's 3rd law: For every action, there is an equal and opposite reaction.
A. linear momentum: The product of an object's mass, m, and its velocity, \[v\] v, is the vector quantity known as linear momentum. It is represented by the letter "\[p\] ," which is also used to denote momentum. Please be aware that the body's momentum always points in the same direction as its vector of velocity. Because it is a conserved quantity, a system's overall momentum is always constant.
B. Energy conservation: A fundamental principle of physics and chemistry states that despite internal changes, the overall energy of an isolated system remains constant. It is the underlying principle of the first law of thermodynamics, which is most frequently stated as "energy cannot be generated or destroyed."
C. Gravitational:Newton’s law of gravitation, states that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them. In symbols, the magnitude of the attractive force \[F\] is equal to \[G\] (the gravitational constant, a number the size of which depends on the system of units used and which is a universal constant) multiplied by the product of the masses (\[{m_1}\] and \[{m_2}\] ) and divided by the square of the distance \[r\]:\[F\; = \;\dfrac{{G({m_1}{m_2})}}{{{r^2}}}\]
D. Charge conservation: Charge conservation in physics states that an isolated system's total electric charge never changes. The universe's net electric charge, which is equal to the sum of positive and negative charges, is always preserved.
Hence, the correct option is C.
Note:With the exception of very small entities like electrons or those moving nearly at the speed of light, Newton's equations continue to accurately describe nature. Newton's rules are what quantum mechanics and relativity come down to for larger or slower moving objects.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

