
What is the maximum value of \[f\left( x \right) = 2 \sin x + \cos 2x\], \[0 \le x \le \dfrac{\pi }{2}\] occurs at \[x\] ?
A. 0
B. \[\dfrac{\pi }{6}\]
C. \[\dfrac{\pi }{2}\]
D. None of these
Answer
162.6k+ views
Hint: First, differentiate the given function with respect to \[x\]. Then simplify the equation by substituting \[f'\left( x \right) = 0\] and get the critical points. Again, differentiate the first differential equation with respect to \[x\]. After that, substitute the critical points in the second derivative and check the maxima and minima of the given function.
Formula used:
1. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
2. \[\dfrac{d}{{dx}}\left( {\cos nx} \right) = - n \sin nx\]
3. \[\dfrac{d}{{dx}}\left( {\sin nx} \right) = n \cos nx\]
4. \[\sin2x = 2\sin x \cos x\]
Complete step by step solution:
The given function is \[f\left( x \right) = 2 \sin x + \cos 2x\], where \[0 \le x \le \dfrac{\pi }{2}\].
Let’s differentiate the above function with respect to \[x\].
Apply the formulas \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos nx} \right) = - n \sin nx\].
\[f'\left( x \right) = 2 \cos x – 2\sin 2x\] \[.....\left( 1 \right)\]
To find the critical points equate the first derivative to zero.
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2 \cos x – 2\sin 2x = 0\]
Divide both sides by 2.
\[ \Rightarrow \cos x - \sin 2x = 0\]
Apply the trigonometric identity \[\sin2x = 2\sin x \cos x\].
\[\cos x – 2\sin x \cos x = 0\]
Factor out the common term.
\[\cos x\left( {1 – 2\sin x} \right) = 0\]
\[ \Rightarrow \cos x = 0\] or \[1 – 2\sin x = 0\]
\[ \Rightarrow \cos x = 0\] or \[\sin x = \dfrac{1}{2}\]
\[ \Rightarrow x = \dfrac{\pi }{2}\] or \[x = \dfrac{\pi }{6}\]
Thus, the critical points of the function are \[x = \dfrac{\pi }{6}\] and \[x = \dfrac{\pi }{2}\].
Differentiate the equation \[\left( 1 \right)\] with respect to \[x\].
Apply the formula \[\dfrac{d}{{dx}}\left( {\sin nx} \right) = n \cos nx\].
\[f''\left( x \right) = - 2 \sin x – 4\cos 2x\] \[.....\left( 2 \right)\]
Now to find the maximum and minimum points of the function, substitute the critical points in the equation \[\left( 2 \right)\].
For \[x = \dfrac{\pi }{2}\]:
\[f''\left( {\dfrac{\pi }{2}} \right) = - 2 \sin\left( {\dfrac{\pi }{2}} \right) – 4\cos 2\left( {\dfrac{\pi }{2}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = - 2 \left( 1 \right) - 4\left( { - 1} \right)\] \[....\left[ {\sin\left( {\dfrac{\pi }{2}} \right) = 1 ,\cos \left( \pi \right) = - 1} \right]\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = - 2 + 4\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = 2 \]
Since \[f''\left( {\dfrac{\pi }{2}} \right) > 0\]. So, it is the minima of the given function.
For \[x = \dfrac{\pi }{6}\]:
\[f''\left( {\dfrac{\pi }{6}} \right) = - 2 \sin\left( {\dfrac{\pi }{6}} \right) – 4\cos 2\left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 2 \sin\left( {\dfrac{\pi }{6}} \right) – 4\cos \left( {\dfrac{\pi }{3}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 2 \left( {\dfrac{1}{2}} \right) - 4\left( {\dfrac{1}{2}} \right)\] \[....\left[ {Since \sin\left( {\dfrac{\pi }{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} } \right]\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 1 - 2\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 3 \]
Since \[f''\left( {\dfrac{\pi }{6}} \right) < 0\]. So, it is the maxima of the given function.
Thus, the maximum point of the given function is \[x = \dfrac{\pi }{6}\].
Hence the correct option is B.
Note: Students often get confused about the maximum and minimum point of a function.
A function \[f\left( x \right)\] has a maximum value at \[x = a\], if \[f'\left( a \right) = 0\], and \[f''\left( a \right) < 0\].
A function \[f\left( x \right)\] has a minimum value at \[x = a\], if \[f'\left( a \right) = 0\], and \[f''\left( a \right) > 0\].
Formula used:
1. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
2. \[\dfrac{d}{{dx}}\left( {\cos nx} \right) = - n \sin nx\]
3. \[\dfrac{d}{{dx}}\left( {\sin nx} \right) = n \cos nx\]
4. \[\sin2x = 2\sin x \cos x\]
Complete step by step solution:
The given function is \[f\left( x \right) = 2 \sin x + \cos 2x\], where \[0 \le x \le \dfrac{\pi }{2}\].
Let’s differentiate the above function with respect to \[x\].
Apply the formulas \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos nx} \right) = - n \sin nx\].
\[f'\left( x \right) = 2 \cos x – 2\sin 2x\] \[.....\left( 1 \right)\]
To find the critical points equate the first derivative to zero.
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2 \cos x – 2\sin 2x = 0\]
Divide both sides by 2.
\[ \Rightarrow \cos x - \sin 2x = 0\]
Apply the trigonometric identity \[\sin2x = 2\sin x \cos x\].
\[\cos x – 2\sin x \cos x = 0\]
Factor out the common term.
\[\cos x\left( {1 – 2\sin x} \right) = 0\]
\[ \Rightarrow \cos x = 0\] or \[1 – 2\sin x = 0\]
\[ \Rightarrow \cos x = 0\] or \[\sin x = \dfrac{1}{2}\]
\[ \Rightarrow x = \dfrac{\pi }{2}\] or \[x = \dfrac{\pi }{6}\]
Thus, the critical points of the function are \[x = \dfrac{\pi }{6}\] and \[x = \dfrac{\pi }{2}\].
Differentiate the equation \[\left( 1 \right)\] with respect to \[x\].
Apply the formula \[\dfrac{d}{{dx}}\left( {\sin nx} \right) = n \cos nx\].
\[f''\left( x \right) = - 2 \sin x – 4\cos 2x\] \[.....\left( 2 \right)\]
Now to find the maximum and minimum points of the function, substitute the critical points in the equation \[\left( 2 \right)\].
For \[x = \dfrac{\pi }{2}\]:
\[f''\left( {\dfrac{\pi }{2}} \right) = - 2 \sin\left( {\dfrac{\pi }{2}} \right) – 4\cos 2\left( {\dfrac{\pi }{2}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = - 2 \left( 1 \right) - 4\left( { - 1} \right)\] \[....\left[ {\sin\left( {\dfrac{\pi }{2}} \right) = 1 ,\cos \left( \pi \right) = - 1} \right]\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = - 2 + 4\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{2}} \right) = 2 \]
Since \[f''\left( {\dfrac{\pi }{2}} \right) > 0\]. So, it is the minima of the given function.
For \[x = \dfrac{\pi }{6}\]:
\[f''\left( {\dfrac{\pi }{6}} \right) = - 2 \sin\left( {\dfrac{\pi }{6}} \right) – 4\cos 2\left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 2 \sin\left( {\dfrac{\pi }{6}} \right) – 4\cos \left( {\dfrac{\pi }{3}} \right)\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 2 \left( {\dfrac{1}{2}} \right) - 4\left( {\dfrac{1}{2}} \right)\] \[....\left[ {Since \sin\left( {\dfrac{\pi }{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} } \right]\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 1 - 2\]
\[ \Rightarrow f''\left( {\dfrac{\pi }{6}} \right) = - 3 \]
Since \[f''\left( {\dfrac{\pi }{6}} \right) < 0\]. So, it is the maxima of the given function.
Thus, the maximum point of the given function is \[x = \dfrac{\pi }{6}\].
Hence the correct option is B.
Note: Students often get confused about the maximum and minimum point of a function.
A function \[f\left( x \right)\] has a maximum value at \[x = a\], if \[f'\left( a \right) = 0\], and \[f''\left( a \right) < 0\].
A function \[f\left( x \right)\] has a minimum value at \[x = a\], if \[f'\left( a \right) = 0\], and \[f''\left( a \right) > 0\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
