
$[\overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k}]$, $[\overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k}]$, then $[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=]$
A. $[3\overrightarrow{a}]$
B. $[3\sqrt{14}]$
C. $0$
D. None of these
Answer
217.5k+ views
Hint: In this question, the dot and cross products of vectors are applied to find the required vector expression. The dot product is said to be a scalar product and the cross product is said to be a skew product or vector product. By using appropriate formulae, the required vector product is calculated.
Formula Used:
The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors $[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}]$ as
$[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}]$
Then, the triple product is calculated by,
$[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|]$
In vector triple product is cross and dot products are interchangeable. I.e.,
$[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}]$
Important vector identities for solving vector equations are:
$[\overrightarrow{a}\times \overrightarrow{a}=0]$
$[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0]$
$[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}]$
Complete step by step solution: It is given that,
$[\begin{align}
& \overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k} \\
& \overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k} \\
\end{align}]$
Then,
$[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]]$
$\begin{align}
& \Rightarrow [\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=\left| \begin{matrix}
3 & -1 & 2 \\
3 & -1 & 2 \\
2 & 1 & -1 \\
\end{matrix} \right| \\
& \text{ }=3(1-2)+1(-3-4)+2(3+2) \\
& \text{ }=3(-1)-7+2(5) \\
& \text{ }=-3-7+10 \\
& \text{ }=0 \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated
Formula Used:
The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors $[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}]$ as
$[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}]$
Then, the triple product is calculated by,
$[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|]$
In vector triple product is cross and dot products are interchangeable. I.e.,
$[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}]$
Important vector identities for solving vector equations are:
$[\overrightarrow{a}\times \overrightarrow{a}=0]$
$[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0]$
$[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}]$
Complete step by step solution: It is given that,
$[\begin{align}
& \overrightarrow{a}=3\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k} \\
& \overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k} \\
\end{align}]$
Then,
$[\overrightarrow{a}\times (\overrightarrow{a}\cdot \overrightarrow{b})=[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]]$
$\begin{align}
& \Rightarrow [\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=\left| \begin{matrix}
3 & -1 & 2 \\
3 & -1 & 2 \\
2 & 1 & -1 \\
\end{matrix} \right| \\
& \text{ }=3(1-2)+1(-3-4)+2(3+2) \\
& \text{ }=3(-1)-7+2(5) \\
& \text{ }=-3-7+10 \\
& \text{ }=0 \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

