
When light waves suffers reflection at the interface from air to glass, the change in phase of reflected waves is equal to:
A $0$
B $\dfrac{\pi }{2}$
C $\pi $
D $2\pi $
Answer
494.1k+ views
Hint As we know reflection of the wave takes place when a light wave falls on the surface, and definitely there would be an angle of reflection as the refractive index of air and glass are different and glass is denser than air.
Complete Step By Step Solution
Reflection of light wave: the reflection of light happens when light waves fall on the surface and that surface can’t absorb the energy of light waves then the light waves get reflected at a certain angle, known as angle of reflection.
The angle of reflection: The angle between the reflected wave and normal is known as the angle of reflection. The angle of reflection depends on the refractive index of the material.
Refractive index: refractive index of a material tells us how fast a light wave can travel in a particular material. The Refractive index is a dimensionless number.
Now, come to the question, when a light wave suffers reflection at the interface from air to glass, it experiences a change in phase because the refractive index of glass is more than air, as we know that air is a rarer medium and glass is denser medium. So, the change in phase of the reflected wave is $\pi $.
Hence, option C is the right answer
Note The point to be noted is we should know that when a light wave travels from rarer to denser than the phase of the incident wave change with angle $\pi $ and when it travels from denser to rare then the phase of the incident wave does not change.
Complete Step By Step Solution
Reflection of light wave: the reflection of light happens when light waves fall on the surface and that surface can’t absorb the energy of light waves then the light waves get reflected at a certain angle, known as angle of reflection.
The angle of reflection: The angle between the reflected wave and normal is known as the angle of reflection. The angle of reflection depends on the refractive index of the material.
Refractive index: refractive index of a material tells us how fast a light wave can travel in a particular material. The Refractive index is a dimensionless number.
Now, come to the question, when a light wave suffers reflection at the interface from air to glass, it experiences a change in phase because the refractive index of glass is more than air, as we know that air is a rarer medium and glass is denser medium. So, the change in phase of the reflected wave is $\pi $.
Hence, option C is the right answer
Note The point to be noted is we should know that when a light wave travels from rarer to denser than the phase of the incident wave change with angle $\pi $ and when it travels from denser to rare then the phase of the incident wave does not change.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

