
Let$f(x)$ be a polynomial with positive degree satisfying the relation $f(x)f(y)=f(x)+f(y)+f(xy)-2$
For all real x and y. Suppose$f(4)=65$ Then
(A) ${{f}^{'}}(x)$ is a polynomial of degree two
(B) roots of equation ${{f}^{'}}(x)=2x+1$ are real
(C) $x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
(D) ${{f}^{'}}(-1)=3$
Answer
218.1k+ views
Hint: First convert the equation in one form and assume$y=\dfrac{1}{x}$and solve it further.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

