Answer
Verified
87.6k+ views
Hint: First convert the equation in one form and assume$y=\dfrac{1}{x}$and solve it further.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If the length of the pendulum is made 9 times and mass class 11 physics JEE_Main
Which of the following facts regarding bond order is class 11 chemistry JEE_Main
Find the number of nitrates which gives NO2gas on heating class 12 chemistry JEE_Main
If temperature of sun is decreased by 1 then the value class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main