
Let \[{x_0}\] be the point of local maxima of \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\], where \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\]. What is the value of \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \] at \[x = {x_0}\]?
A. -22
B. -4
C. -30
D. 14
Answer
161.1k+ views
Hint: First we will apply the triple product formula to calculate the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]. We find the local maxima by finding the differentiation of \[f\left( x \right)\]. The value of \[{x_0}\] is the maxima of \[f\left( x \right)\]. By using dot product formula to calculate \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \] then we will put \[x = {x_0}\] to get required answer.
Formula used:
Triple product: \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\], \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], \[\overrightarrow c = {x_3}\widehat i + {y_3}\widehat j + {z_3}\widehat k\]
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}\\{{x_2}}&{{y_2}}&{{z_2}}\\{{x_3}}&{{y_3}}&{{z_3}}\end{array}} \right|\]
The formula of dot product \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\] is \[\overrightarrow a \cdot \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Formula of differentiate: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
Given that \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\].
Applying the triple product to calculate \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\].
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}x&{ - 2}&3\\{ - 2}&x&{ - 1}\\7&{ - 2}&x\end{array}} \right|\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = x\left( {{x^2} - 2} \right) + 2\left( { - 2x + 7} \right) + 3\left( {4 - 7x} \right)\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 2x - 4x + 14 + 12 - 21x\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 27x + 26\]
Now putting the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\] in \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]
\[f\left( x \right) = {x^3} - 27x + 26\]
Differentiate with respect to \[x\]
\[f'\left( x \right) = 3{x^2} - 27\]
Again, differentiate with respect to \[x\].
\[f''\left( x \right) = 6x\]
To calculate the local minima or maxima we will equate \[f'\left( x \right)\] with 0.
\[0 = 3{x^2} - 27\]
Solve the above equation:
\[ \Rightarrow 3{x^2} = 27\]
Divide both sides by 3
\[ \Rightarrow {x^2} = 9\]
Taking square root on both sides
\[ \Rightarrow x = \pm 3\]
Now putting \[x = 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot 3 = 18 > 0\]
Since \[f''\left( x \right) > 0\], so the function \[f\left( x \right)\] has minima at \[x = 3\].
Now putting \[x = - 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot \left( { - 3} \right) = - 18 < 0\]
Since \[f''\left( x \right) < 0\], so the function \[f\left( x \right)\] has maxima at \[x = - 3\].
Thus, the value of \[{x_0}\] is -3.
Now applying the dot product in \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[ = \left( {x\widehat i - 2\widehat j + 3\widehat k} \right) \cdot \left( { - 2\widehat i + x\widehat j - \widehat k} \right) + \left( { - 2\widehat i + x\widehat j - \widehat k} \right) \cdot \left( {7\widehat i - 2\widehat j + x\widehat k} \right) + \left( {7\widehat i - 2\widehat j + x\widehat k} \right) \cdot \left( {x\widehat i - 2\widehat j + 3\widehat k} \right)\]
\[ = \left( { - 2x - 2x - 3} \right) + \left( { - 14 - 2 - x} \right) + \left( {7x + 4 + 3x} \right)\]
\[ = - 2x - 2x - 3 - 14 - 2 - x + 7x + 4 + 3x\]
\[ = 5x - 15\]
Now putting \[x = -3\] in the above expression.
\[ = 5 \cdot \left( { - 3} \right) - 15\]
\[ = - 30\]
Hence option C is the correct option.
Note: Students often confused to calculate the maxima or minima. If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has maxima at \[x = a\]. If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has minima at \[x = a\].
Formula used:
Triple product: \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\], \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], \[\overrightarrow c = {x_3}\widehat i + {y_3}\widehat j + {z_3}\widehat k\]
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}\\{{x_2}}&{{y_2}}&{{z_2}}\\{{x_3}}&{{y_3}}&{{z_3}}\end{array}} \right|\]
The formula of dot product \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\] is \[\overrightarrow a \cdot \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Formula of differentiate: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
Given that \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\].
Applying the triple product to calculate \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\].
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}x&{ - 2}&3\\{ - 2}&x&{ - 1}\\7&{ - 2}&x\end{array}} \right|\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = x\left( {{x^2} - 2} \right) + 2\left( { - 2x + 7} \right) + 3\left( {4 - 7x} \right)\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 2x - 4x + 14 + 12 - 21x\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 27x + 26\]
Now putting the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\] in \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]
\[f\left( x \right) = {x^3} - 27x + 26\]
Differentiate with respect to \[x\]
\[f'\left( x \right) = 3{x^2} - 27\]
Again, differentiate with respect to \[x\].
\[f''\left( x \right) = 6x\]
To calculate the local minima or maxima we will equate \[f'\left( x \right)\] with 0.
\[0 = 3{x^2} - 27\]
Solve the above equation:
\[ \Rightarrow 3{x^2} = 27\]
Divide both sides by 3
\[ \Rightarrow {x^2} = 9\]
Taking square root on both sides
\[ \Rightarrow x = \pm 3\]
Now putting \[x = 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot 3 = 18 > 0\]
Since \[f''\left( x \right) > 0\], so the function \[f\left( x \right)\] has minima at \[x = 3\].
Now putting \[x = - 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot \left( { - 3} \right) = - 18 < 0\]
Since \[f''\left( x \right) < 0\], so the function \[f\left( x \right)\] has maxima at \[x = - 3\].
Thus, the value of \[{x_0}\] is -3.
Now applying the dot product in \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[ = \left( {x\widehat i - 2\widehat j + 3\widehat k} \right) \cdot \left( { - 2\widehat i + x\widehat j - \widehat k} \right) + \left( { - 2\widehat i + x\widehat j - \widehat k} \right) \cdot \left( {7\widehat i - 2\widehat j + x\widehat k} \right) + \left( {7\widehat i - 2\widehat j + x\widehat k} \right) \cdot \left( {x\widehat i - 2\widehat j + 3\widehat k} \right)\]
\[ = \left( { - 2x - 2x - 3} \right) + \left( { - 14 - 2 - x} \right) + \left( {7x + 4 + 3x} \right)\]
\[ = - 2x - 2x - 3 - 14 - 2 - x + 7x + 4 + 3x\]
\[ = 5x - 15\]
Now putting \[x = -3\] in the above expression.
\[ = 5 \cdot \left( { - 3} \right) - 15\]
\[ = - 30\]
Hence option C is the correct option.
Note: Students often confused to calculate the maxima or minima. If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has maxima at \[x = a\]. If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has minima at \[x = a\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
