
Let \[{x_0}\] be the point of local maxima of \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\], where \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\]. What is the value of \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \] at \[x = {x_0}\]?
A. -22
B. -4
C. -30
D. 14
Answer
232.8k+ views
Hint: First we will apply the triple product formula to calculate the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]. We find the local maxima by finding the differentiation of \[f\left( x \right)\]. The value of \[{x_0}\] is the maxima of \[f\left( x \right)\]. By using dot product formula to calculate \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \] then we will put \[x = {x_0}\] to get required answer.
Formula used:
Triple product: \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\], \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], \[\overrightarrow c = {x_3}\widehat i + {y_3}\widehat j + {z_3}\widehat k\]
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}\\{{x_2}}&{{y_2}}&{{z_2}}\\{{x_3}}&{{y_3}}&{{z_3}}\end{array}} \right|\]
The formula of dot product \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\] is \[\overrightarrow a \cdot \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Formula of differentiate: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
Given that \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\].
Applying the triple product to calculate \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\].
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}x&{ - 2}&3\\{ - 2}&x&{ - 1}\\7&{ - 2}&x\end{array}} \right|\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = x\left( {{x^2} - 2} \right) + 2\left( { - 2x + 7} \right) + 3\left( {4 - 7x} \right)\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 2x - 4x + 14 + 12 - 21x\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 27x + 26\]
Now putting the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\] in \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]
\[f\left( x \right) = {x^3} - 27x + 26\]
Differentiate with respect to \[x\]
\[f'\left( x \right) = 3{x^2} - 27\]
Again, differentiate with respect to \[x\].
\[f''\left( x \right) = 6x\]
To calculate the local minima or maxima we will equate \[f'\left( x \right)\] with 0.
\[0 = 3{x^2} - 27\]
Solve the above equation:
\[ \Rightarrow 3{x^2} = 27\]
Divide both sides by 3
\[ \Rightarrow {x^2} = 9\]
Taking square root on both sides
\[ \Rightarrow x = \pm 3\]
Now putting \[x = 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot 3 = 18 > 0\]
Since \[f''\left( x \right) > 0\], so the function \[f\left( x \right)\] has minima at \[x = 3\].
Now putting \[x = - 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot \left( { - 3} \right) = - 18 < 0\]
Since \[f''\left( x \right) < 0\], so the function \[f\left( x \right)\] has maxima at \[x = - 3\].
Thus, the value of \[{x_0}\] is -3.
Now applying the dot product in \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[ = \left( {x\widehat i - 2\widehat j + 3\widehat k} \right) \cdot \left( { - 2\widehat i + x\widehat j - \widehat k} \right) + \left( { - 2\widehat i + x\widehat j - \widehat k} \right) \cdot \left( {7\widehat i - 2\widehat j + x\widehat k} \right) + \left( {7\widehat i - 2\widehat j + x\widehat k} \right) \cdot \left( {x\widehat i - 2\widehat j + 3\widehat k} \right)\]
\[ = \left( { - 2x - 2x - 3} \right) + \left( { - 14 - 2 - x} \right) + \left( {7x + 4 + 3x} \right)\]
\[ = - 2x - 2x - 3 - 14 - 2 - x + 7x + 4 + 3x\]
\[ = 5x - 15\]
Now putting \[x = -3\] in the above expression.
\[ = 5 \cdot \left( { - 3} \right) - 15\]
\[ = - 30\]
Hence option C is the correct option.
Note: Students often confused to calculate the maxima or minima. If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has maxima at \[x = a\]. If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has minima at \[x = a\].
Formula used:
Triple product: \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\], \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\], \[\overrightarrow c = {x_3}\widehat i + {y_3}\widehat j + {z_3}\widehat k\]
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&{{z_1}}\\{{x_2}}&{{y_2}}&{{z_2}}\\{{x_3}}&{{y_3}}&{{z_3}}\end{array}} \right|\]
The formula of dot product \[\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k\] and \[\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k\] is \[\overrightarrow a \cdot \overrightarrow b = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\].
Formula of differentiate: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
Given that \[\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k\] , \[\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k\] and \[\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k\].
Applying the triple product to calculate \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\].
\[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = \left| {\begin{array}{*{20}{c}}x&{ - 2}&3\\{ - 2}&x&{ - 1}\\7&{ - 2}&x\end{array}} \right|\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = x\left( {{x^2} - 2} \right) + 2\left( { - 2x + 7} \right) + 3\left( {4 - 7x} \right)\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 2x - 4x + 14 + 12 - 21x\]
\[ \Rightarrow \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right) = {x^3} - 27x + 26\]
Now putting the value of \[\overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\] in \[f\left( x \right) = \overrightarrow a \cdot \left( {\overrightarrow b \times \overrightarrow c } \right)\]
\[f\left( x \right) = {x^3} - 27x + 26\]
Differentiate with respect to \[x\]
\[f'\left( x \right) = 3{x^2} - 27\]
Again, differentiate with respect to \[x\].
\[f''\left( x \right) = 6x\]
To calculate the local minima or maxima we will equate \[f'\left( x \right)\] with 0.
\[0 = 3{x^2} - 27\]
Solve the above equation:
\[ \Rightarrow 3{x^2} = 27\]
Divide both sides by 3
\[ \Rightarrow {x^2} = 9\]
Taking square root on both sides
\[ \Rightarrow x = \pm 3\]
Now putting \[x = 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot 3 = 18 > 0\]
Since \[f''\left( x \right) > 0\], so the function \[f\left( x \right)\] has minima at \[x = 3\].
Now putting \[x = - 3\] in \[f''\left( x \right) = 6x\]
\[f''\left( x \right) = 6 \cdot \left( { - 3} \right) = - 18 < 0\]
Since \[f''\left( x \right) < 0\], so the function \[f\left( x \right)\] has maxima at \[x = - 3\].
Thus, the value of \[{x_0}\] is -3.
Now applying the dot product in \[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a \]
\[ = \left( {x\widehat i - 2\widehat j + 3\widehat k} \right) \cdot \left( { - 2\widehat i + x\widehat j - \widehat k} \right) + \left( { - 2\widehat i + x\widehat j - \widehat k} \right) \cdot \left( {7\widehat i - 2\widehat j + x\widehat k} \right) + \left( {7\widehat i - 2\widehat j + x\widehat k} \right) \cdot \left( {x\widehat i - 2\widehat j + 3\widehat k} \right)\]
\[ = \left( { - 2x - 2x - 3} \right) + \left( { - 14 - 2 - x} \right) + \left( {7x + 4 + 3x} \right)\]
\[ = - 2x - 2x - 3 - 14 - 2 - x + 7x + 4 + 3x\]
\[ = 5x - 15\]
Now putting \[x = -3\] in the above expression.
\[ = 5 \cdot \left( { - 3} \right) - 15\]
\[ = - 30\]
Hence option C is the correct option.
Note: Students often confused to calculate the maxima or minima. If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has maxima at \[x = a\]. If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has minima at \[x = a\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

