
Let ${{[}}{{{\varepsilon }}_{{0}}}]$ denote the dimensional formula of the permittivity of the vacuum, and ${{[}}{{{\mu }}_{{0}}}{{]}}$ that of the permeability of the vacuum. If ${{M = }}$mass, ${{L = }}$length, ${{T = }}$time and ${{I = }}$electric current.
(This question has multiple correct options)
$
{{(A) [}}{{{\mu }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{2}}}{{I}} \\
{{(B) [}}{{{\varepsilon }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^4}{{{I}}^{{2}}} \\
{{(C) [}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}} \\
{{(D) [}}{{{\mu }}_{{0}}}{{] = M}}{{{L}}^{{2}}}{{{T}}^{{{ - 1}}}}{{I}} $
Answer
219.6k+ views
Hint: For finding the dimensional formula of permittivity in vacuum, remind the formula in which this term appears. Then re-arranging accordingly and find out the dimensional formula for the same. And then follow the same for finding the dimensional formula of permeability of the vacuum.
Complete step by step solution:
Given: ${{M = }}$mass, ${{L = }}$length, ${{T = }}$time and ${{I = }}$electric current
${{[}}{{{\varepsilon }}_{{0}}}]$ denotes the dimensional formula of the permittivity of the vacuum
${{[}}{{{\mu }}_{{0}}}{{]}}$ denotes the dimensional formula of the permeability of the vacuum
Using coulomb’s law, we have
${{F = }}\dfrac{{{1}}}{{{{4\pi }}{{{\varepsilon }}_{{0}}}}}\dfrac{{{{{q}}_{{1}}}{{{q}}_{{2}}}}}{{{{{r}}^{{2}}}}}$
On rearranging the terms, we have
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{4\pi F}}}}\dfrac{{{{{q}}_{{1}}}{{{q}}_{{2}}}}}{{{{{r}}^{{2}}}}}$
Let us assume that both the charges are equal. Mathematically, we can say that $\Rightarrow {{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = q}}$.
Now, the formula becomes
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{4\pi F}}}}\dfrac{{{{{q}}^2}}}{{{{{r}}^{{2}}}}}$
The dimensional formula of charge (q) is ${{[IT]}}$
The dimensional formula of force (F) is ${{[ML}}{{{T}}^{{{ - 2}}}}{{]}}$
The dimensional formula of distance (r) is ${{[L]}}$
Now, the dimensional formula of permittivity of the vacuum ${{{\varepsilon }}_{{0}}}$ is:
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{{[}}{{{I}}^{{2}}}{{{T}}^{{2}}}{{]}}}}{{{{[ML}}{{{T}}^{{{ - 2}}}}{{{L}}^{{2}}}{{]}}}}{{ = [}}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}{{]}}$
Or ${{[}}{{{\varepsilon }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}$
Formula for speed of light is ${{c = }}\dfrac{{{1}}}{{\sqrt {{{{\varepsilon }}_{{0}}}{{{\mu }}_{{0}}}} }}$
On rearranging terms, we get
$\Rightarrow {{{\mu }}_{{0}}}{{ = }}\dfrac{{{1}}}{{\sqrt {{{{\varepsilon }}_{{0}}}{{{c}}^{{2}}}} }}$
The dimensional formula for permittivity of vacuum is ${{{\varepsilon }}_{{0}}}{{ = [}}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}]$ (as calculated above)
The dimensional formula of speed of light ${{c = [L}}{{{T}}^{{{ - 1}}}}{{]}}$
Thus, the dimensional formula of permeability of the vacuum is given by
$\Rightarrow {{{\mu }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}}}{{ = [ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}{{]}}$
Or ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$
Thus, the dimensional formula of permittivity of the vacuum is ${{[}}{{{\varepsilon }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}$ and the dimensional formula of permeability of the vacuum is ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$.
Therefore, option (B) and (C) are the correct choices.
Note: Dimensional formula will always be closed in a square bracket [ ]. Here, in the options none of the dimensional formulas are kept in square brackets. This is so because the square brackets are imposed on the quantity here. For example, if we write the dimensional formula of permeability of vacuum, ${{{\mu }}_{{0}}}{{ = [ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}]$ or ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$. They both are the same thing.
Complete step by step solution:
Given: ${{M = }}$mass, ${{L = }}$length, ${{T = }}$time and ${{I = }}$electric current
${{[}}{{{\varepsilon }}_{{0}}}]$ denotes the dimensional formula of the permittivity of the vacuum
${{[}}{{{\mu }}_{{0}}}{{]}}$ denotes the dimensional formula of the permeability of the vacuum
Using coulomb’s law, we have
${{F = }}\dfrac{{{1}}}{{{{4\pi }}{{{\varepsilon }}_{{0}}}}}\dfrac{{{{{q}}_{{1}}}{{{q}}_{{2}}}}}{{{{{r}}^{{2}}}}}$
On rearranging the terms, we have
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{4\pi F}}}}\dfrac{{{{{q}}_{{1}}}{{{q}}_{{2}}}}}{{{{{r}}^{{2}}}}}$
Let us assume that both the charges are equal. Mathematically, we can say that $\Rightarrow {{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = q}}$.
Now, the formula becomes
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{4\pi F}}}}\dfrac{{{{{q}}^2}}}{{{{{r}}^{{2}}}}}$
The dimensional formula of charge (q) is ${{[IT]}}$
The dimensional formula of force (F) is ${{[ML}}{{{T}}^{{{ - 2}}}}{{]}}$
The dimensional formula of distance (r) is ${{[L]}}$
Now, the dimensional formula of permittivity of the vacuum ${{{\varepsilon }}_{{0}}}$ is:
$\Rightarrow {{{\varepsilon }}_{{0}}}{{ = }}\dfrac{{{{[}}{{{I}}^{{2}}}{{{T}}^{{2}}}{{]}}}}{{{{[ML}}{{{T}}^{{{ - 2}}}}{{{L}}^{{2}}}{{]}}}}{{ = [}}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}{{]}}$
Or ${{[}}{{{\varepsilon }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}$
Formula for speed of light is ${{c = }}\dfrac{{{1}}}{{\sqrt {{{{\varepsilon }}_{{0}}}{{{\mu }}_{{0}}}} }}$
On rearranging terms, we get
$\Rightarrow {{{\mu }}_{{0}}}{{ = }}\dfrac{{{1}}}{{\sqrt {{{{\varepsilon }}_{{0}}}{{{c}}^{{2}}}} }}$
The dimensional formula for permittivity of vacuum is ${{{\varepsilon }}_{{0}}}{{ = [}}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}]$ (as calculated above)
The dimensional formula of speed of light ${{c = [L}}{{{T}}^{{{ - 1}}}}{{]}}$
Thus, the dimensional formula of permeability of the vacuum is given by
$\Rightarrow {{{\mu }}_{{0}}}{{ = }}\dfrac{{{1}}}{{{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}}}{{ = [ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}{{]}}$
Or ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$
Thus, the dimensional formula of permittivity of the vacuum is ${{[}}{{{\varepsilon }}_{{0}}}{{] = }}{{{M}}^{{{ - 1}}}}{{{L}}^{{{ - 3}}}}{{{T}}^{{4}}}{{{I}}^{{2}}}$ and the dimensional formula of permeability of the vacuum is ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$.
Therefore, option (B) and (C) are the correct choices.
Note: Dimensional formula will always be closed in a square bracket [ ]. Here, in the options none of the dimensional formulas are kept in square brackets. This is so because the square brackets are imposed on the quantity here. For example, if we write the dimensional formula of permeability of vacuum, ${{{\mu }}_{{0}}}{{ = [ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}]$ or ${{[}}{{{\mu }}_{{0}}}{{] = ML}}{{{T}}^{{{ - 2}}}}{{{I}}^{{{ - 2}}}}$. They both are the same thing.
Recently Updated Pages
Chemical Bonding and Molecular Structure Chapter for JEE Main Chemistry

Combination of Mirrors Explained: Definition, Types & Uses

Electric Field of Infinite Line Charge and Cylinders Explained

Functional Equations Explained: Key Concepts & Practice

Hinge Force Explained: Formula, Examples & Applications

Instantaneous Velocity Explained: Formula, Examples & Graphs

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

