
Let two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle. A point P moves so that at any time t the position vector $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . When P is farthest from origin O,let M be the length of $\mathop {OP}\limits^ \to $and $\mathop u\limits^ \wedge $ be the unit vector along vector OP. Then:
A) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
B) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge - \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
C) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
D) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge - \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Answer
218.4k+ views
Hint: Two non collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $are given. We only need to put the position vector equation and then apply the formula for maximum value and some trigonometric function for M. After that we will get the unit vector by applying the formula of the unit vector and hence get our answer.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

