
Let the latus rectum of the parabola \[{y^2} = 4x\] be the common chord to the circle \[{C_{1{\rm{ }}}}\] and \[{{\rm{C}}_2}\] each of them having radius \[2\sqrt 5 \]. Then the distance between the centers of the circle \[{C_{1{\rm{ }}}}\] and \[{{\rm{C}}_2}\]is,
A.8
B.\[8\sqrt 5 \]
C.\[4\sqrt 5 \]
D.12
Answer
164.4k+ views
Hint: First draw the diagram of the stated problem, from the diagram we can say that \[{C_1}B = B{C_2}\] as B is the middle point of the line \[{C_1}{C_2}\], therefore we can conclude that \[{C_1}{C_2} = 2{C_1}B = 2B{C_2}\] . Now, apply the Pythagoras theorem to obtain the value of \[{C_1}B\]. Multiply the obtained value of \[{C_1}B\] by 2, to obtain the required value.
Formula used:
Pythagoras theorem states that, for a right-angle triangle \[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2}\] .
Complete step by step solution:
For the given parabola the latus rectum is 4 as in the general form \[{y^2} = 4ax\] the latus rectum is 4a.
So, the diagram of the stated problem is,

The given two circles have an equal radius, and it is given that the common chord of these two circles is the latus rectum of the parabola \[{y^2} = 4x\], here the length of latus rectum is 4 so, length of AB must be half of the length of the latus rectum. As the latus rectum divides the line \[{C_1}{C_2}\] into two equal parts so we can conclude that \[{C_1}{C_2} = 2{C_1}B = 2B{C_2}\] .
Now, it is a right-angle triangle.
Apply Pythagoras theorem on this triangle to obtain the value of the base.
\[{\left( {A{C_1}} \right)^2} = {\left( {{C_1}B} \right)^2} + {\left( {BA} \right)^2}\]
\[ \Rightarrow {\left( {2\sqrt 5 } \right)^2} = {\left( {{C_1}B} \right)^2} + {\left( 2 \right)^2}\]
\[ \Rightarrow 4 \times 5 = {\left( {{C_1}B} \right)^2} + 4\]
\[\begin{array}{l} \Rightarrow {\left( {{C_1}B} \right)^2} = 20 - 4\\{\rm{ = 16}}\end{array}\]
Therefore, \[{C_1}B = \pm 4\]
As the distance can-not be negative therefore \[{C_1}B = 4\]
Hence,
\[\begin{array}{c}{C_1}{C_2} = 2{C_1}B\\ = 2 \times 4\\ = 8\end{array}\]
Hence the Required value is 8.
Note: Students are often confused to calculate the latus rectum of a parabola. They do not take 4a as the latus rectum. They calculate the latus rectum as 1. But the correct latus rectum is 4.
Formula used:
Pythagoras theorem states that, for a right-angle triangle \[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2}\] .
Complete step by step solution:
For the given parabola the latus rectum is 4 as in the general form \[{y^2} = 4ax\] the latus rectum is 4a.
So, the diagram of the stated problem is,

The given two circles have an equal radius, and it is given that the common chord of these two circles is the latus rectum of the parabola \[{y^2} = 4x\], here the length of latus rectum is 4 so, length of AB must be half of the length of the latus rectum. As the latus rectum divides the line \[{C_1}{C_2}\] into two equal parts so we can conclude that \[{C_1}{C_2} = 2{C_1}B = 2B{C_2}\] .
Now, it is a right-angle triangle.
Apply Pythagoras theorem on this triangle to obtain the value of the base.
\[{\left( {A{C_1}} \right)^2} = {\left( {{C_1}B} \right)^2} + {\left( {BA} \right)^2}\]
\[ \Rightarrow {\left( {2\sqrt 5 } \right)^2} = {\left( {{C_1}B} \right)^2} + {\left( 2 \right)^2}\]
\[ \Rightarrow 4 \times 5 = {\left( {{C_1}B} \right)^2} + 4\]
\[\begin{array}{l} \Rightarrow {\left( {{C_1}B} \right)^2} = 20 - 4\\{\rm{ = 16}}\end{array}\]
Therefore, \[{C_1}B = \pm 4\]
As the distance can-not be negative therefore \[{C_1}B = 4\]
Hence,
\[\begin{array}{c}{C_1}{C_2} = 2{C_1}B\\ = 2 \times 4\\ = 8\end{array}\]
Hence the Required value is 8.
Note: Students are often confused to calculate the latus rectum of a parabola. They do not take 4a as the latus rectum. They calculate the latus rectum as 1. But the correct latus rectum is 4.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
