
Let \[{{S}_{n}}(1\le n\le 9)\] denotes the sum of \[n\] terms of series \[1+22+333+....+9999999999\], then for \[2\le n\le 9\]
A. \[{{S}_{n}}-{{S}_{n-1}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+n)\]
B. \[{{S}_{n}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+2n-2)\]
C. \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\]
D. None of these
Answer
162.6k+ views
Hint: In this question, we have to find the sum of \[n\] terms of the given series. For this, we need to split the series into a combination of series. Here we get all the series as geometric series. So, by using the sum of the \[n\] terms of a geometric series, we can find the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
