
Let \[{{S}_{n}}(1\le n\le 9)\] denotes the sum of \[n\] terms of series \[1+22+333+....+9999999999\], then for \[2\le n\le 9\]
A. \[{{S}_{n}}-{{S}_{n-1}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+n)\]
B. \[{{S}_{n}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+2n-2)\]
C. \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\]
D. None of these
Answer
217.8k+ views
Hint: In this question, we have to find the sum of \[n\] terms of the given series. For this, we need to split the series into a combination of series. Here we get all the series as geometric series. So, by using the sum of the \[n\] terms of a geometric series, we can find the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Electromagnetic Waves and Their Importance

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions: Practice Problems, Answers & Exam Tricks

