
Let \[{{S}_{n}}(1\le n\le 9)\] denotes the sum of \[n\] terms of series \[1+22+333+....+9999999999\], then for \[2\le n\le 9\]
A. \[{{S}_{n}}-{{S}_{n-1}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+n)\]
B. \[{{S}_{n}}=\dfrac{1}{9}({{10}^{n}}-{{n}^{2}}+2n-2)\]
C. \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\]
D. None of these
Answer
233.1k+ views
Hint: In this question, we have to find the sum of \[n\] terms of the given series. For this, we need to split the series into a combination of series. Here we get all the series as geometric series. So, by using the sum of the \[n\] terms of a geometric series, we can find the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - is Common ratio.
The sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$.
Complete step by step solution: Given series is
\[{{S}_{n}}=1+22+333+....+9999999999\]
Rewriting the given series,
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}(9)+\dfrac{2}{9}(99)+\dfrac{3}{9}(999)+... \\
& \text{ }=\dfrac{1}{9}\left( 10-1 \right)+\dfrac{2}{9}({{10}^{2}}-1)+\dfrac{3}{9}({{10}^{3}}-1)+... \\
& \text{ }=\dfrac{1}{9}\left[ 10+{{2.10}^{2}}+{{3.10}^{3}}+... \right]-\dfrac{1}{9}\left[ 1+2+3+... \right] \\
\end{align}\]
We know that the sum of $n$ natural numbers is $\dfrac{n(n+1)}{2}$
Consider the obtained series as \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\]
Then, we get
\[{{S}_{n}}=\dfrac{1}{9}S-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(1)\]
Now, simplifying the series \[S=10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}}\],
Multiplying by $10$ on both sides, we get
\[10S={{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}}\]
On subtracting the series $10S$ from the series $S$, we get
\[\begin{align}
& S-10S=\left( 10+{{2.10}^{2}}+{{3.10}^{3}}+...+n\cdot {{10}^{n}} \right)-\left( {{10}^{2}}+{{2.10}^{3}}+{{3.10}^{4}}+...(n-1){{10}^{n}}+n\cdot {{10}^{n+1}} \right) \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+\left( n\cdot {{10}^{n}}-(n-1){{10}^{n}} \right) \right)-n\cdot {{10}^{n+1}} \\
& \Rightarrow -9S=\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right)-n\cdot {{10}^{n+1}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9S=n\cdot {{10}^{n+1}}-\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}} \right) \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{1}{9}\left[ \dfrac{10({{10}^{n}}-1)}{10-1} \right] \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{10({{10}^{n}}-1)}{81} \\
& \Rightarrow S=\dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81}\text{ }...(2) \\
\end{align}\]
Then, substituting (2) in (1), we get
\[\begin{align}
& {{S}_{n}}=\dfrac{1}{9}\left[ \dfrac{n}{9}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{81} \right]-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{81}{{10}^{n+1}}-\dfrac{{{10}^{n+1}}-10}{9\times 81}-\dfrac{1}{9}\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{9n\cdot {{10}^{n+1}}-{{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}+10}{81}-\left[ \dfrac{n(n+1)}{2} \right] \\
& \Rightarrow 9{{S}_{n}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]\text{ }...(3) \\
\end{align}\]
Now, substituting $n=n-1$ in (3) we get,
\[\begin{align}
& 9{{S}_{n-1}}=\dfrac{(9(n-1)-1){{10}^{(n-1)+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{(n-1)((n-1)+1)}{2} \right] \\
& \text{ }=\dfrac{(9n-9-1){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-10){{10}^{n}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n-1)}{2} \right]\text{ }...(4) \\
\end{align}\]
Then, by subtracting (4) from (3), we get
\[\begin{align}
& 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{(9n-1){{10}^{n+1}}}{81}+\dfrac{10}{81}-\left[ \dfrac{n(n+1)}{2} \right]-\dfrac{(9n-10){{10}^{n}}}{81}-\dfrac{10}{81}+\left[ \dfrac{n(n-1)}{2} \right] \\
& \text{ }=\dfrac{(9n-1){{10}^{n+1}}}{81}-\dfrac{(9n-10){{10}^{n}}}{81}+\left[ \dfrac{n(n-1)}{2} \right]-\left[ \dfrac{n(n+1)}{2} \right] \\
& \text{ }=\dfrac{{{10}^{n}}}{81}\left[ (9n-1)10-(9n-10) \right]+\dfrac{n}{2}\left[ n-1-n-1 \right] \\
\end{align}\]
\[\begin{align}
& \Rightarrow 9{{S}_{n}}-9{{S}_{n-1}}=\dfrac{{{10}^{n}}}{81}\left[ 90n-10-9n+10 \right]-n \\
& \text{ }=\dfrac{{{10}^{n}}}{81}(81n)-n \\
& \text{ }=n({{10}^{n}}-1) \\
\end{align}\]
Therefore, the required answer is \[9\left( {{S}_{n}}-{{S}_{n-1}} \right)=n({{10}^{n}}-1)\].
Option ‘C’ is correct
Note: Here we need to split the given series in order to avoid the complexity of the problem in solving. Since all the series here are geometric series. So, we can easily calculate their sums. By using their sums, we can extract the required expression.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

