
Let \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]and \[\cos \left( {\alpha + \beta } \right) = \dfrac{3}{5}\] where \[\alpha ,\beta \in \left( {0,\dfrac{\pi }{4}} \right)\] then \[\tan 2\alpha \]
A. \[\dfrac{{63}}{{16}}\]
B. \[\dfrac{{61}}{{16}}\]
C. \[\dfrac{{65}}{{16}}\]
D. \[\dfrac{{32}}{9}\]
Answer
164.4k+ views
Hint: In the given question, we need to find the value of \[\tan 2\alpha \]. For that, we use the basic trigonometric formulas like \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\] and identities like \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\] to get the desired result.
Formula used:
We have been using the following formulas:
1. \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
2. \[{\sec ^2}x = 1 + {\tan ^2}x\]
3. \[{\sin ^2}x + {\cos ^2}x = 1\]
4. \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Complete step-by-step solution:
Given that
\[\cos \left( {\alpha + \beta } \right) = \dfrac{3}{5}...\left( 1 \right)\]
\[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}...\left( 2 \right)\]
Now take squares on both sides in equation (1):
\[
{\cos ^2}\left( {\alpha + \beta } \right) = {\left( {\dfrac{3}{5}} \right)^2} \\
= \dfrac{9}{{25}}
\]
Now take the inverse of both sides of the above equation:
\[
\dfrac{1}{{{{\cos }^2}\left( {\alpha + \beta } \right)}} = \dfrac{1}{{\dfrac{9}{{25}}}} \\
= \dfrac{{25}}{9}...\left( 3 \right)
\]
We know that \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
Now apply this formula to equation (3):
\[{\sec ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9}...\left( 4 \right)\]
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]
Now apply this identity to equation (4):
\[
1 + {\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9} \\
{\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9} - 1 \\
{\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25 - 9}}{9} \\
= \dfrac{{16}}{9}
\]
Further solving,
\[{\tan ^2}\left( {\alpha + \beta } \right) = {\left( {\dfrac{4}{3}} \right)^2}\]
By canceling squares on both sides:
\[\tan \left( {\alpha + \beta } \right) = \pm \dfrac{4}{3}\]
Given that \[\alpha ,\beta \in \left( {0,\dfrac{\pi }{4}} \right)\] that means
\[
0 \leqslant \alpha \leqslant \dfrac{\pi }{4}...\left( 5 \right) \\
0 \leqslant \beta \leqslant \dfrac{\pi }{4}...\left( 6 \right)
\]
Now add equations (5) and (6):
\[
0 + 0 \leqslant \alpha + \beta \leqslant \dfrac{\pi }{4} + \dfrac{\pi }{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{{\pi + \pi }}{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{{2\pi }}{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{\pi }{2}
\]
Thus, tan is positive in the first quadrant.
Therefore, \[\tan \left( {\alpha + \beta } \right) = \dfrac{4}{3}\]
Consider \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}...\left( 2 \right)\]
Take squares on both sides of equation (2):
\[
{\sin ^2}\left( {\alpha - \beta } \right) = {\left( {\dfrac{5}{{13}}} \right)^2} \\
= \dfrac{{25}}{{169}}
\]
We know that \[{\sin ^2}x + {\cos ^2}x = 1\]
By applying this formula to the above equation:
\[\dfrac{{25}}{{169}} + {\cos ^2}\left( {\alpha - \beta } \right) = 1\]
By simplifying, we get
\[
{\cos ^2}\left( {\alpha - \beta } \right) = 1 - \dfrac{{25}}{{169}} \\
= \dfrac{{169 - 25}}{{169}} \\
= \dfrac{{144}}{{169}}
\]
By taking the inverse on both sides of the above equation:
\[
\dfrac{1}{{{{\cos }^2}\left( {\alpha - \beta } \right)}} = \dfrac{1}{{\dfrac{{144}}{{169}}}} \\
= \dfrac{{169}}{{144}}...\left( 7 \right)
\]
We know that \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
By applying this formula in equation (7):
\[{\sec ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}}\]
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]
By applying this identity to our equation:
\[
1 + {\tan ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}} \\
{\tan ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}} - 1 \\
= \dfrac{{169 - 144}}{{144}} \\
= \dfrac{{25}}{{144}}
\]
Further simplifying,
\[\tan \left( {\alpha - \beta } \right) = \pm \dfrac{5}{{12}}\]
Now the angle \[\alpha - \beta \] lies in the first quadrant.
Thus, tan is positive.
\[\tan \left( {\alpha - \beta } \right) = \dfrac{5}{{12}}\]
Now we know that \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Therefore, \[\tan \left( {\alpha + \beta + \left( {\alpha - \beta } \right)} \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}\]
By substituting all the values in it:
\[
\tan \left( {\alpha + \beta + \alpha - \beta } \right) = \dfrac{{\dfrac{4}{3} + \dfrac{5}{{12}}}}{{1 - \dfrac{4}{3} \times \dfrac{5}{{12}}}} \\
\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{16 + 5}}{{12}}}}{{1 - \dfrac{{20}}{{36}}}} \\
= \dfrac{{\dfrac{{21}}{{12}}}}{{\dfrac{{36 - 20}}{{36}}}} \\
= \dfrac{{\dfrac{{21}}{{12}}}}{{\dfrac{{16}}{{36}}}}
\]
Further simplifying,
\[
\tan \left( {2\alpha } \right) = \dfrac{{21}}{{12}} \times \dfrac{{36}}{{16}} \\
= \dfrac{{21 \times 3}}{{16}} \\
= \dfrac{{63}}{{16}}
\]
Hence, option (A) is correct
Note: Students must know the properties of trigonometric formulas to solve this type of question, and they should be careful while taking the inverse of the function, as it has a chance of making a mistake.
Formula used:
We have been using the following formulas:
1. \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
2. \[{\sec ^2}x = 1 + {\tan ^2}x\]
3. \[{\sin ^2}x + {\cos ^2}x = 1\]
4. \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Complete step-by-step solution:
Given that
\[\cos \left( {\alpha + \beta } \right) = \dfrac{3}{5}...\left( 1 \right)\]
\[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}...\left( 2 \right)\]
Now take squares on both sides in equation (1):
\[
{\cos ^2}\left( {\alpha + \beta } \right) = {\left( {\dfrac{3}{5}} \right)^2} \\
= \dfrac{9}{{25}}
\]
Now take the inverse of both sides of the above equation:
\[
\dfrac{1}{{{{\cos }^2}\left( {\alpha + \beta } \right)}} = \dfrac{1}{{\dfrac{9}{{25}}}} \\
= \dfrac{{25}}{9}...\left( 3 \right)
\]
We know that \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
Now apply this formula to equation (3):
\[{\sec ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9}...\left( 4 \right)\]
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]
Now apply this identity to equation (4):
\[
1 + {\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9} \\
{\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25}}{9} - 1 \\
{\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{25 - 9}}{9} \\
= \dfrac{{16}}{9}
\]
Further solving,
\[{\tan ^2}\left( {\alpha + \beta } \right) = {\left( {\dfrac{4}{3}} \right)^2}\]
By canceling squares on both sides:
\[\tan \left( {\alpha + \beta } \right) = \pm \dfrac{4}{3}\]
Given that \[\alpha ,\beta \in \left( {0,\dfrac{\pi }{4}} \right)\] that means
\[
0 \leqslant \alpha \leqslant \dfrac{\pi }{4}...\left( 5 \right) \\
0 \leqslant \beta \leqslant \dfrac{\pi }{4}...\left( 6 \right)
\]
Now add equations (5) and (6):
\[
0 + 0 \leqslant \alpha + \beta \leqslant \dfrac{\pi }{4} + \dfrac{\pi }{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{{\pi + \pi }}{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{{2\pi }}{4} \\
0 \leqslant \alpha + \beta \leqslant \dfrac{\pi }{2}
\]
Thus, tan is positive in the first quadrant.
Therefore, \[\tan \left( {\alpha + \beta } \right) = \dfrac{4}{3}\]
Consider \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}...\left( 2 \right)\]
Take squares on both sides of equation (2):
\[
{\sin ^2}\left( {\alpha - \beta } \right) = {\left( {\dfrac{5}{{13}}} \right)^2} \\
= \dfrac{{25}}{{169}}
\]
We know that \[{\sin ^2}x + {\cos ^2}x = 1\]
By applying this formula to the above equation:
\[\dfrac{{25}}{{169}} + {\cos ^2}\left( {\alpha - \beta } \right) = 1\]
By simplifying, we get
\[
{\cos ^2}\left( {\alpha - \beta } \right) = 1 - \dfrac{{25}}{{169}} \\
= \dfrac{{169 - 25}}{{169}} \\
= \dfrac{{144}}{{169}}
\]
By taking the inverse on both sides of the above equation:
\[
\dfrac{1}{{{{\cos }^2}\left( {\alpha - \beta } \right)}} = \dfrac{1}{{\dfrac{{144}}{{169}}}} \\
= \dfrac{{169}}{{144}}...\left( 7 \right)
\]
We know that \[{\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}}\]
By applying this formula in equation (7):
\[{\sec ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}}\]
We know that \[{\sec ^2}x = 1 + {\tan ^2}x\]
By applying this identity to our equation:
\[
1 + {\tan ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}} \\
{\tan ^2}\left( {\alpha - \beta } \right) = \dfrac{{169}}{{144}} - 1 \\
= \dfrac{{169 - 144}}{{144}} \\
= \dfrac{{25}}{{144}}
\]
Further simplifying,
\[\tan \left( {\alpha - \beta } \right) = \pm \dfrac{5}{{12}}\]
Now the angle \[\alpha - \beta \] lies in the first quadrant.
Thus, tan is positive.
\[\tan \left( {\alpha - \beta } \right) = \dfrac{5}{{12}}\]
Now we know that \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
Therefore, \[\tan \left( {\alpha + \beta + \left( {\alpha - \beta } \right)} \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}\]
By substituting all the values in it:
\[
\tan \left( {\alpha + \beta + \alpha - \beta } \right) = \dfrac{{\dfrac{4}{3} + \dfrac{5}{{12}}}}{{1 - \dfrac{4}{3} \times \dfrac{5}{{12}}}} \\
\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{16 + 5}}{{12}}}}{{1 - \dfrac{{20}}{{36}}}} \\
= \dfrac{{\dfrac{{21}}{{12}}}}{{\dfrac{{36 - 20}}{{36}}}} \\
= \dfrac{{\dfrac{{21}}{{12}}}}{{\dfrac{{16}}{{36}}}}
\]
Further simplifying,
\[
\tan \left( {2\alpha } \right) = \dfrac{{21}}{{12}} \times \dfrac{{36}}{{16}} \\
= \dfrac{{21 \times 3}}{{16}} \\
= \dfrac{{63}}{{16}}
\]
Hence, option (A) is correct
Note: Students must know the properties of trigonometric formulas to solve this type of question, and they should be careful while taking the inverse of the function, as it has a chance of making a mistake.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
