
Let P be an \[3 \times 3\]matrix where alpha belongs to R. Suppose \[Q = \left[ {{q_{ij}}} \right]\] is a matrix \[PQ = k{I_3}\] for some non-zero \[k \in R\]. If \[{q_{23}} = - k/8\] and \[\left| Q \right| = {k^2}/2\], then find the value of \[{\alpha ^2} + {k^2}\].
\[P = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&{ - 2} \\
2&0&\alpha \\
3&{ - 5}&0
\end{array}} \right]\]
Answer
161.4k+ views
Hint: In this question, we have to determine the value of \[{\alpha ^2} + {k^2}\]. First we will find the value of alpha. For this, we have to use the relations such as \[PQ = k{I_3}\] and \[{q_{23}} = - k/8\].
After that, we can find the value of \[k\] using the relation \[\left| Q \right| = {k^2}/2\].
Formula used: We will use the following identity of iota for solving this example.
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj{\text{ A}}} \right)\] where, \[A\] is a matrix.
Complete step-by-step answer:
We know that \[PQ = kI\]
That gives us \[Q = k{P^{ - 1}}I\]
So, \[Q = \dfrac{k}{{\left| P \right|}}\left( {adj.{\text{ P}}} \right)I\]…… (1)
Let us find the value of \[\left| P \right|\]
\[
\left| P \right| = \left| {\begin{array}{*{20}{c}}
3&{ - 1}&{ - 2} \\
2&0&\alpha \\
3&{ - 5}&0
\end{array}} \right| \\
\left| P \right| = 3\left( {\left( {0 \times 0} \right) - \left( {\left( { - 5} \right) \times \alpha } \right)} \right) - \left( { - 1} \right)\left( {\left( {2 \times 0} \right) - \left( {3 \times \alpha } \right)} \right) - 2\left( {\left( {2 \times \left( { - 5} \right)} \right) - \left( {3 \times 0} \right)} \right) \\
\left| P \right| = 3\left( {0 + 5\alpha } \right) + \left( {0 - \left( {3\alpha } \right)} \right) - 2\left( { - 10 - 0} \right) \\
\left| P \right| = 15\alpha - 3\alpha + 20 \\
\left| P \right| = 12\alpha + 20 \\
\]
Now, we will find the adjoint of a matrix P.
For this, first we will find the cofactor matrix of P that contains all the co-factors of matrix P.
For this, we will use \[{C_{ij}} = {\left( { - 1} \right)^{i + j}}{M_{ij}}\], where \[{M_{ij}}\]is the minor.
\[{C_{11}} = {\left( { - 1} \right)^{1 + 1}}\left| {\begin{array}{*{20}{c}}
0&\alpha \\
{ - 5}&0
\end{array}} \right| = \left( 1 \right) \times \left[ {0 - \left( { - 5\alpha } \right)} \right] = 5\alpha \]
\[{C_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| {\begin{array}{*{20}{c}}
2&\alpha \\
3&0
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {2 \times 0} \right) - \left( {3\alpha } \right)} \right] = 3\alpha \]
\[{C_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| {\begin{array}{*{20}{c}}
2&0 \\
3&{ - 5}
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {2 \times \left( { - 5} \right)} \right) - \left( {3 \times 0} \right)} \right] = - 10\]
\[{C_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
{ - 5}&0
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( { - 1 \times 0} \right) - \left( {\left( { - 2} \right) \times \left( { - 5} \right)} \right)} \right] = 10\]
\[{C_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 2} \\
3&0
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {3 \times 0} \right) - \left( {\left( { - 2} \right) \times \left( 3 \right)} \right)} \right] = 6\]
\[{C_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| {\begin{array}{*{20}{c}}
3&{ - 1} \\
3&{ - 5}
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {3 \times \left( { - 5} \right)} \right) - \left( {\left( { - 1} \right) \times \left( 3 \right)} \right)} \right] = 12\]
\[{C_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
0&\alpha
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( { - 1 \times \left( \alpha \right)} \right) - \left( {\left( { - 2} \right) \times \left( 0 \right)} \right)} \right] = - \alpha \]
\[{C_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 2} \\
2&\alpha
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {3 \times \left( \alpha \right)} \right) - \left( {\left( { - 2} \right) \times \left( 2 \right)} \right)} \right] = - 3\alpha - 4\]
\[{C_{33}} = {\left( { - 1} \right)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
3&{ - 1} \\
2&0
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {3 \times \left( 0 \right)} \right) - \left( {\left( { - 1} \right) \times \left( 2 \right)} \right)} \right] = 2\]
So, the desired cofactor matrix is given by \[\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{3\alpha }&{ - 10} \\
{10}&6&{12} \\
{ - \alpha }&{ - 3\alpha - 4}&2
\end{array}} \right]\]
Now, we will obtain an adjoint matrix by interchanging the row and column of the cofactor matrix.
Thus, we get
\[Adj{\text{ P}} = \left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\]
From equation (1), we get
\[Q = \dfrac{k}{{12\alpha + 20}}\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
This gives
\[Q = \dfrac{k}{{12\alpha + 20}}\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\]
But we know that \[{q_{23}} = \dfrac{{ - k}}{8}\]
\[{q_{23}} = \dfrac{{\left( { - 3\alpha - 4} \right)k}}{{\left( {12\alpha + 20} \right)}}\]
Hence, we get
\[\dfrac{{\left( { - 3\alpha - 4} \right)k}}{{\left( {12\alpha + 20} \right)}} = \dfrac{{ - k}}{8}\]
By simplifying, we get
\[\dfrac{{\left( {3\alpha + 4} \right)}}{{\left( {12\alpha + 20} \right)}} = \dfrac{1}{8}\]
\[8\left( {3\alpha + 4} \right) = 1\left( {12\alpha + 20} \right)\]
\[24\alpha + 32 = 12\alpha + 20\]
\[24\alpha - 12\alpha = 20 - 32\]
By simplifying further, we get
\[12\alpha = - 12\]
This gives
\[\alpha = - 1\]
Also, we know that \[\left| Q \right| = \dfrac{{{k^2}}}{2}\]
But \[\left| Q \right| = \dfrac{{{k^3}\left| I \right|}}{{\left| P \right|}}\]
Thus, we get
\[\dfrac{{{k^2}}}{2} = \dfrac{{{k^3}\left( 1 \right)}}{{\left( {12\alpha + 20} \right)}}\]
By simplifying, we get
\[\dfrac{1}{2} = \dfrac{k}{{4\left( {3\alpha + 5} \right)}}\]
\[1 = \dfrac{k}{{2\left( {3\alpha + 5} \right)}}\]
\[2\left( {3\alpha + 5} \right) = k\]
Now, put \[\alpha = - 1\] in the above equation.
So, we get
\[2\left( {3\left( { - 1} \right) + 5} \right) = k\]
\[2\left( { - 3 + 5} \right) = k\]
\[2\left( 2 \right) = k\]
Thus, we get \[k = 4\]
Let us find the value of \[{\alpha ^2} + {k^2}\].
\[{\alpha ^2} + {k^2} = {\left( { - 1} \right)^2} + {\left( 4 \right)^2}\]
\[{\alpha ^2} + {k^2} = 1 + 16\]
\[{\alpha ^2} + {k^2} = 17\]
Therefore, the value of \[{\alpha ^2} + {k^2}\]is \[17\].
Note: Many students make mistakes in finding the inverse of a matrix. Particularly, they may get confused with signs while calculating minors.
After that, we can find the value of \[k\] using the relation \[\left| Q \right| = {k^2}/2\].
Formula used: We will use the following identity of iota for solving this example.
\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj{\text{ A}}} \right)\] where, \[A\] is a matrix.
Complete step-by-step answer:
We know that \[PQ = kI\]
That gives us \[Q = k{P^{ - 1}}I\]
So, \[Q = \dfrac{k}{{\left| P \right|}}\left( {adj.{\text{ P}}} \right)I\]…… (1)
Let us find the value of \[\left| P \right|\]
\[
\left| P \right| = \left| {\begin{array}{*{20}{c}}
3&{ - 1}&{ - 2} \\
2&0&\alpha \\
3&{ - 5}&0
\end{array}} \right| \\
\left| P \right| = 3\left( {\left( {0 \times 0} \right) - \left( {\left( { - 5} \right) \times \alpha } \right)} \right) - \left( { - 1} \right)\left( {\left( {2 \times 0} \right) - \left( {3 \times \alpha } \right)} \right) - 2\left( {\left( {2 \times \left( { - 5} \right)} \right) - \left( {3 \times 0} \right)} \right) \\
\left| P \right| = 3\left( {0 + 5\alpha } \right) + \left( {0 - \left( {3\alpha } \right)} \right) - 2\left( { - 10 - 0} \right) \\
\left| P \right| = 15\alpha - 3\alpha + 20 \\
\left| P \right| = 12\alpha + 20 \\
\]
Now, we will find the adjoint of a matrix P.
For this, first we will find the cofactor matrix of P that contains all the co-factors of matrix P.
For this, we will use \[{C_{ij}} = {\left( { - 1} \right)^{i + j}}{M_{ij}}\], where \[{M_{ij}}\]is the minor.
\[{C_{11}} = {\left( { - 1} \right)^{1 + 1}}\left| {\begin{array}{*{20}{c}}
0&\alpha \\
{ - 5}&0
\end{array}} \right| = \left( 1 \right) \times \left[ {0 - \left( { - 5\alpha } \right)} \right] = 5\alpha \]
\[{C_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| {\begin{array}{*{20}{c}}
2&\alpha \\
3&0
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {2 \times 0} \right) - \left( {3\alpha } \right)} \right] = 3\alpha \]
\[{C_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| {\begin{array}{*{20}{c}}
2&0 \\
3&{ - 5}
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {2 \times \left( { - 5} \right)} \right) - \left( {3 \times 0} \right)} \right] = - 10\]
\[{C_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
{ - 5}&0
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( { - 1 \times 0} \right) - \left( {\left( { - 2} \right) \times \left( { - 5} \right)} \right)} \right] = 10\]
\[{C_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 2} \\
3&0
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {3 \times 0} \right) - \left( {\left( { - 2} \right) \times \left( 3 \right)} \right)} \right] = 6\]
\[{C_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| {\begin{array}{*{20}{c}}
3&{ - 1} \\
3&{ - 5}
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {3 \times \left( { - 5} \right)} \right) - \left( {\left( { - 1} \right) \times \left( 3 \right)} \right)} \right] = 12\]
\[{C_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
0&\alpha
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( { - 1 \times \left( \alpha \right)} \right) - \left( {\left( { - 2} \right) \times \left( 0 \right)} \right)} \right] = - \alpha \]
\[{C_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 2} \\
2&\alpha
\end{array}} \right| = \left( { - 1} \right) \times \left[ {\left( {3 \times \left( \alpha \right)} \right) - \left( {\left( { - 2} \right) \times \left( 2 \right)} \right)} \right] = - 3\alpha - 4\]
\[{C_{33}} = {\left( { - 1} \right)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
3&{ - 1} \\
2&0
\end{array}} \right| = \left( 1 \right) \times \left[ {\left( {3 \times \left( 0 \right)} \right) - \left( {\left( { - 1} \right) \times \left( 2 \right)} \right)} \right] = 2\]
So, the desired cofactor matrix is given by \[\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{3\alpha }&{ - 10} \\
{10}&6&{12} \\
{ - \alpha }&{ - 3\alpha - 4}&2
\end{array}} \right]\]
Now, we will obtain an adjoint matrix by interchanging the row and column of the cofactor matrix.
Thus, we get
\[Adj{\text{ P}} = \left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\]
From equation (1), we get
\[Q = \dfrac{k}{{12\alpha + 20}}\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
This gives
\[Q = \dfrac{k}{{12\alpha + 20}}\left[ {\begin{array}{*{20}{c}}
{5\alpha }&{10}&{ - \alpha } \\
{3\alpha }&6&{ - 3\alpha - 4} \\
{ - 10}&{12}&2
\end{array}} \right]\]
But we know that \[{q_{23}} = \dfrac{{ - k}}{8}\]
\[{q_{23}} = \dfrac{{\left( { - 3\alpha - 4} \right)k}}{{\left( {12\alpha + 20} \right)}}\]
Hence, we get
\[\dfrac{{\left( { - 3\alpha - 4} \right)k}}{{\left( {12\alpha + 20} \right)}} = \dfrac{{ - k}}{8}\]
By simplifying, we get
\[\dfrac{{\left( {3\alpha + 4} \right)}}{{\left( {12\alpha + 20} \right)}} = \dfrac{1}{8}\]
\[8\left( {3\alpha + 4} \right) = 1\left( {12\alpha + 20} \right)\]
\[24\alpha + 32 = 12\alpha + 20\]
\[24\alpha - 12\alpha = 20 - 32\]
By simplifying further, we get
\[12\alpha = - 12\]
This gives
\[\alpha = - 1\]
Also, we know that \[\left| Q \right| = \dfrac{{{k^2}}}{2}\]
But \[\left| Q \right| = \dfrac{{{k^3}\left| I \right|}}{{\left| P \right|}}\]
Thus, we get
\[\dfrac{{{k^2}}}{2} = \dfrac{{{k^3}\left( 1 \right)}}{{\left( {12\alpha + 20} \right)}}\]
By simplifying, we get
\[\dfrac{1}{2} = \dfrac{k}{{4\left( {3\alpha + 5} \right)}}\]
\[1 = \dfrac{k}{{2\left( {3\alpha + 5} \right)}}\]
\[2\left( {3\alpha + 5} \right) = k\]
Now, put \[\alpha = - 1\] in the above equation.
So, we get
\[2\left( {3\left( { - 1} \right) + 5} \right) = k\]
\[2\left( { - 3 + 5} \right) = k\]
\[2\left( 2 \right) = k\]
Thus, we get \[k = 4\]
Let us find the value of \[{\alpha ^2} + {k^2}\].
\[{\alpha ^2} + {k^2} = {\left( { - 1} \right)^2} + {\left( 4 \right)^2}\]
\[{\alpha ^2} + {k^2} = 1 + 16\]
\[{\alpha ^2} + {k^2} = 17\]
Therefore, the value of \[{\alpha ^2} + {k^2}\]is \[17\].
Note: Many students make mistakes in finding the inverse of a matrix. Particularly, they may get confused with signs while calculating minors.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
