
Let, \[n(A) = n\]. Then find the number of all relations on A.
A.\[{2^n}\]
B. \[{2^{n!}}\]
C. \[{2^{{n^2}}}\]
D. None
Answer
163.8k+ views
Hint: Recall the total number of relations from a set A to another set B with\[n(A) = p\] and \[n(B) = q\]. Then substitute n for p and n for q in the obtained expression to get the required result.
Complete step by step solution: Complete step by step solution
The total number of relations from a set A to another set B, with \[n(A) = p\] and \[n(B) = q\]is \[{2^{pq}}\] .
Substitute n for p and n for q in the expression \[{2^{pq}}\] to obtain the required result.
Hence, \[{2^{n \times n}} = {2^{{n^2}}}\]
Option ‘C’ is correct
Additional Information: Relation is defined the relationship between two sets. There are 8 types of relation.
Empty relation: An empty relation is a relation when there is no relation between two sets.
Universal relation: An universal relation is a relation such that all elements of a set are related to every element of the set.
Identity relation: An identity relation is a relation such that all elements of a set are related to itself only.
Inverse relation: The inverse relation is a relation such that the set of ordered pairs obtained by interchanging the first and second elements of each pair in the original function.
Reflexive relation: A relation is said to be reflexive on set A, if each element of a set is related to itself.
Symmetric relation: A relation is said to be symmetric if (a,b) belongs to R implies (b,a) belongs to R.
Transitive relation: A relation is said to be transitive if (a,b), (b,c) belongs to R implies (a,c) belongs to R.
Note: Sometimes student get confused and substitute n for \[pq\] as it is given that \[n(A) = n\], and get the answer \[{2^n}\] but relation is defined from a set to another set, so here two sets are A and A, so we have to substitute n for p and n for q to obtain the required answer \[{2^{{n^2}}}\].
Complete step by step solution: Complete step by step solution
The total number of relations from a set A to another set B, with \[n(A) = p\] and \[n(B) = q\]is \[{2^{pq}}\] .
Substitute n for p and n for q in the expression \[{2^{pq}}\] to obtain the required result.
Hence, \[{2^{n \times n}} = {2^{{n^2}}}\]
Option ‘C’ is correct
Additional Information: Relation is defined the relationship between two sets. There are 8 types of relation.
Empty relation: An empty relation is a relation when there is no relation between two sets.
Universal relation: An universal relation is a relation such that all elements of a set are related to every element of the set.
Identity relation: An identity relation is a relation such that all elements of a set are related to itself only.
Inverse relation: The inverse relation is a relation such that the set of ordered pairs obtained by interchanging the first and second elements of each pair in the original function.
Reflexive relation: A relation is said to be reflexive on set A, if each element of a set is related to itself.
Symmetric relation: A relation is said to be symmetric if (a,b) belongs to R implies (b,a) belongs to R.
Transitive relation: A relation is said to be transitive if (a,b), (b,c) belongs to R implies (a,c) belongs to R.
Note: Sometimes student get confused and substitute n for \[pq\] as it is given that \[n(A) = n\], and get the answer \[{2^n}\] but relation is defined from a set to another set, so here two sets are A and A, so we have to substitute n for p and n for q to obtain the required answer \[{2^{{n^2}}}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
