
Let \[\vec{A}=\hat{i}+\hat{j}+\hat{k},\vec{B}=\hat{i},\vec{C}={{C}_{1}}\hat{i}+{{C}_{2}}\hat{j}+{{C}_{3}}\hat{k}\]. If ${{C}_{2}}=-1$ and ${{C}_{3}}=1$, then to make three vectors coplanar [AMU 2000]
A. ${{C}_{1}}=0$
B. ${{C}_{1}}=1$
C. ${{C}_{1}}=2$
D. No value of ${{C}_{1}}$ can be found
Answer
218.1k+ views
Hint: In a three-dimensional space when vectors lie on the same plane, then they are called Coplanar vectors. These vectors are parallelly aligned to the same plane.
Conditions for the Coplanar Vectors
· When the scalar triple product is zero for the given three vectors in 3d-space, then the vectors are coplanar.
· When in 3d-space vectors are linearly independent, then the vectors are coplanar.
Formula Used:For three vectors to be coplanar, their triple product should be equals to zero i.e.,
$\vec{A}.(\vec{B}\times \vec{C})=0$
Complete step by step solution:Given that \[\vec{A}=\hat{i}+\hat{j}+\hat{k},\vec{B}=\hat{i},\vec{C}={{C}_{1}}\hat{i}+{{C}_{2}}\hat{j}+{{C}_{3}}\hat{k}\]
For three vectors to be coplanar, their triple product should be equals to zero i.e.,
$\vec{A}.(\vec{B}\times \vec{C})=0$
If ${{C}_{2}}=-1$ and ${{C}_{3}}=1$, then we have
\[\vec{C}={{C}_{1}}\hat{i}-\hat{j}+\hat{k}\]
Therefore,
\[(\hat{i}+\hat{j}+\hat{k}).[\hat{i}\times ({{C}_{1}}\hat{i}-\hat{j}+\hat{k})]=0\]
\[\Rightarrow (\hat{i}+\hat{j}+\hat{k}).\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 0 & 0 \\
{{C}_{1}} & -1 & 1 \\
\end{matrix} \right|=0\]
\[\Rightarrow (\hat{i}+\hat{j}+\hat{k}).[\hat{i}(0-0)-\hat{j}(1-0)+\hat{k}(-1-0)]=0\]
$\Rightarrow (\hat{i}+\hat{j}+\hat{k}).(-\hat{j}-\hat{k})=0$
$\Rightarrow -2\ne 0$
Therefore, we cannot find value for ${{C}_{1}}$.
Option ‘D’ is correct
Note: Dot product of UNIT VECTORS: -
$\begin{align}
& \hat{i}.\hat{i}=1 \\
& \hat{j}.\hat{j}=1 \\
& \hat{k}.\hat{k}=1 \\
& \hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{k}.\hat{i}=0 \\
\end{align}$
Cross product of unit vectors: -
\[\begin{align}
& \hat{i}\times \hat{j}=\hat{k} \\
& \hat{j}\times \hat{k}=\hat{i} \\
& \hat{k}\times \hat{i}=\hat{j} \\
& \hat{j}\times \hat{i}=-\hat{k} \\
& \hat{k}\times \hat{j}=-\hat{i} \\
& \hat{i}\times \hat{k}=-\hat{j} \\
& \hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0 \\
\end{align}\]
Conditions for the Coplanar Vectors
· When the scalar triple product is zero for the given three vectors in 3d-space, then the vectors are coplanar.
· When in 3d-space vectors are linearly independent, then the vectors are coplanar.
Formula Used:For three vectors to be coplanar, their triple product should be equals to zero i.e.,
$\vec{A}.(\vec{B}\times \vec{C})=0$
Complete step by step solution:Given that \[\vec{A}=\hat{i}+\hat{j}+\hat{k},\vec{B}=\hat{i},\vec{C}={{C}_{1}}\hat{i}+{{C}_{2}}\hat{j}+{{C}_{3}}\hat{k}\]
For three vectors to be coplanar, their triple product should be equals to zero i.e.,
$\vec{A}.(\vec{B}\times \vec{C})=0$
If ${{C}_{2}}=-1$ and ${{C}_{3}}=1$, then we have
\[\vec{C}={{C}_{1}}\hat{i}-\hat{j}+\hat{k}\]
Therefore,
\[(\hat{i}+\hat{j}+\hat{k}).[\hat{i}\times ({{C}_{1}}\hat{i}-\hat{j}+\hat{k})]=0\]
\[\Rightarrow (\hat{i}+\hat{j}+\hat{k}).\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 0 & 0 \\
{{C}_{1}} & -1 & 1 \\
\end{matrix} \right|=0\]
\[\Rightarrow (\hat{i}+\hat{j}+\hat{k}).[\hat{i}(0-0)-\hat{j}(1-0)+\hat{k}(-1-0)]=0\]
$\Rightarrow (\hat{i}+\hat{j}+\hat{k}).(-\hat{j}-\hat{k})=0$
$\Rightarrow -2\ne 0$
Therefore, we cannot find value for ${{C}_{1}}$.
Option ‘D’ is correct
Note: Dot product of UNIT VECTORS: -
$\begin{align}
& \hat{i}.\hat{i}=1 \\
& \hat{j}.\hat{j}=1 \\
& \hat{k}.\hat{k}=1 \\
& \hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{k}.\hat{i}=0 \\
\end{align}$
Cross product of unit vectors: -
\[\begin{align}
& \hat{i}\times \hat{j}=\hat{k} \\
& \hat{j}\times \hat{k}=\hat{i} \\
& \hat{k}\times \hat{i}=\hat{j} \\
& \hat{j}\times \hat{i}=-\hat{k} \\
& \hat{k}\times \hat{j}=-\hat{i} \\
& \hat{i}\times \hat{k}=-\hat{j} \\
& \hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0 \\
\end{align}\]
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

