
Let $\mathrm{B}_{\mathrm{P}}$ and $\mathrm{B}_{\mathrm{Q}}$ be the magnetic field produced by the wire $\mathrm{P}$ and $\mathrm{Q}$ which are placed symmetrically $\mathrm{i}$a rectangular loop ABCD as shown in figure. Current in wire $\mathrm{P}$ is directed inward and in $\mathrm{Q}$ is $2 \mathrm{I}$ directed outwards. if $\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{B}} \mathrm{Q} \cdot \overrightarrow{\mathrm{d}} \ell=2 \mu_{0}$ tesla meter $, \int_{\mathrm{D}}^{\mathrm{A}} \overrightarrow{\mathrm{B}} \mathrm{p} \cdot \overrightarrow{\mathrm{d}} \ell=-2 \mu_{0}$
tesla meter $\int_{\mathbf{A}}^{\mathbf{B}}{\overrightarrow{{{\mathbf{B}}_{\mathbf{P}}}}}\cdot \overrightarrow{\mathbf{d}\ell }=-{{\mu }_{0}}$ tesla meter the value of I will be:

(A) 8 A
(B) 4 A
(C) 5 A
(D) 6 A
Answer
205.2k+ views
Hint: We know that the magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetized materials. A charge that is moving in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in the Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamic.
Complete step by step answer
We know that the principle of superposition states that every charge in space creates an electric field at a point independent of the presence of other charges in that medium. The resultant electric field is a vector sum of the electric field due to individual charges. The principle of superposition may be applied to waves whenever two (or more) waves travelling through the same medium at the same time. The waves pass through each other without being disturbed. The net displacement of the medium at any point in space or time, is simply the sum of the individual wave displacements.
$P \rightarrow A B, C D, D A, B C$
$Q \rightarrow A B, C D, D A, B C$
Given $\int_{A}^{B} \vec{B}_{Q} \cdot d \vec{l}=2 \mu_{0} T-m$
$\int_{D}^{B} \vec{B}_{P} \cdot d \vec{l}=-2 \mu_{0} T-m$
$\int_{A}^{B} \vec{B}_{P} \cdot d \vec{l}=-\mu_{0} T-m$
we know $\int \vec{B}_{n e t} \cdot D \vec{l}=\mu_{0}(2 I-I)=\mu_{0} I$
Using superposition taking wire $\mathrm{P}$ only $\int \vec{B}_{P} \cdot d \vec{l}=-\mu_{0} I$ and $\int \vec{B}_{Q} \cdot d \vec{l}=\mu_{0} 2 I$
$\int_{A}^{B} \vec{B}_{P} d \vec{l}+\int_{B}^{C} \vec{B}_{P} d \vec{l}+\int_{A}^{D} \vec{B}_{P} d \vec{l}+\int_{D}^{A} \vec{B}_{P} d \vec{l}=-\mu_{0} I$
From symmetry it is clear $\int_{B}^{C} \vec{B}_{P} d \vec{l}=\int_{D}^{A} \vec{B}_{P} d \vec{l}$
$\operatorname{As} \int_{A}^{B} \vec{B}_{Q} d \vec{l}=2 \mu_{0} I$
Hence, $\int_{B}^{C} \vec{B}_{P} d \vec{l}=-\mu_{0} I$
Also, $\int_{D}^{A} \vec{B}_{Q} d \vec{l}=-2 \mu_{0} I$
Then, $\int_{A}^{D} \vec{B}_{Q} d \vec{l}=4 \mu_{0} I=\int \vec{B}_{Q} d \vec{l}$
$\int_{A}^{B} \vec{B}_{P} d \vec{l}=-\mu_{0} I \Rightarrow \int_{D}^{C} \vec{B}_{Q} d \vec{l}=2 \mu_{0} I$
$\int \vec{B}_{\text {net }} d \vec{l}=\int \vec{B}_{P} d \vec{l}+\int \vec{B}_{Q} d \vec{l}=\mu_{0} I$
$=\left[-\mu_{0} I-\mu_{0} I-2 \mu_{0} I-2 \mu_{0} I\right]$
$+\left[2 \mu_{0} I+2 \mu_{0} I+4 \mu_{0} I+4 \mu_{0} I\right]$
$=-6 \mu_{0} I+12 \mu_{0} I=\mu_{0}(6 I)$
Hence, $I=6 A .$
So option D is correct.
Note:
We know that the superposition theorem states that for a linear system (notably including the subcategory of time-invariant linear systems) the response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source. The application of superposition theorem is, we can employ only for linear circuits as well as the circuit which has more supplies. Equivalent section currents and voltages algebraically included discovering what they will perform with every power supply in effect. The total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source separately. To evaluate the separate currents to be combined, replace all other voltage sources by short circuits and all other current sources by open circuits.
Complete step by step answer
We know that the principle of superposition states that every charge in space creates an electric field at a point independent of the presence of other charges in that medium. The resultant electric field is a vector sum of the electric field due to individual charges. The principle of superposition may be applied to waves whenever two (or more) waves travelling through the same medium at the same time. The waves pass through each other without being disturbed. The net displacement of the medium at any point in space or time, is simply the sum of the individual wave displacements.
$P \rightarrow A B, C D, D A, B C$
$Q \rightarrow A B, C D, D A, B C$
Given $\int_{A}^{B} \vec{B}_{Q} \cdot d \vec{l}=2 \mu_{0} T-m$
$\int_{D}^{B} \vec{B}_{P} \cdot d \vec{l}=-2 \mu_{0} T-m$
$\int_{A}^{B} \vec{B}_{P} \cdot d \vec{l}=-\mu_{0} T-m$
we know $\int \vec{B}_{n e t} \cdot D \vec{l}=\mu_{0}(2 I-I)=\mu_{0} I$
Using superposition taking wire $\mathrm{P}$ only $\int \vec{B}_{P} \cdot d \vec{l}=-\mu_{0} I$ and $\int \vec{B}_{Q} \cdot d \vec{l}=\mu_{0} 2 I$
$\int_{A}^{B} \vec{B}_{P} d \vec{l}+\int_{B}^{C} \vec{B}_{P} d \vec{l}+\int_{A}^{D} \vec{B}_{P} d \vec{l}+\int_{D}^{A} \vec{B}_{P} d \vec{l}=-\mu_{0} I$
From symmetry it is clear $\int_{B}^{C} \vec{B}_{P} d \vec{l}=\int_{D}^{A} \vec{B}_{P} d \vec{l}$
$\operatorname{As} \int_{A}^{B} \vec{B}_{Q} d \vec{l}=2 \mu_{0} I$
Hence, $\int_{B}^{C} \vec{B}_{P} d \vec{l}=-\mu_{0} I$
Also, $\int_{D}^{A} \vec{B}_{Q} d \vec{l}=-2 \mu_{0} I$
Then, $\int_{A}^{D} \vec{B}_{Q} d \vec{l}=4 \mu_{0} I=\int \vec{B}_{Q} d \vec{l}$
$\int_{A}^{B} \vec{B}_{P} d \vec{l}=-\mu_{0} I \Rightarrow \int_{D}^{C} \vec{B}_{Q} d \vec{l}=2 \mu_{0} I$
$\int \vec{B}_{\text {net }} d \vec{l}=\int \vec{B}_{P} d \vec{l}+\int \vec{B}_{Q} d \vec{l}=\mu_{0} I$
$=\left[-\mu_{0} I-\mu_{0} I-2 \mu_{0} I-2 \mu_{0} I\right]$
$+\left[2 \mu_{0} I+2 \mu_{0} I+4 \mu_{0} I+4 \mu_{0} I\right]$
$=-6 \mu_{0} I+12 \mu_{0} I=\mu_{0}(6 I)$
Hence, $I=6 A .$
So option D is correct.
Note:
We know that the superposition theorem states that for a linear system (notably including the subcategory of time-invariant linear systems) the response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source. The application of superposition theorem is, we can employ only for linear circuits as well as the circuit which has more supplies. Equivalent section currents and voltages algebraically included discovering what they will perform with every power supply in effect. The total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source separately. To evaluate the separate currents to be combined, replace all other voltage sources by short circuits and all other current sources by open circuits.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Centre of Mass of Hollow and Solid Hemisphere Explained

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Wheatstone Bridge Explained: Principle, Working, and Uses

Charging and Discharging of Capacitor Explained

Young's Double Slit Experiment Derivation: Formula, Steps & Diagram

