
Let \[\left[ t \right]\] denote the greatest integer \[ \le t\]. If for some \[\lambda \in R - \left\{ {0,1} \right\}\] , \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\]. Then find the value of \[L\].
A. 0
B. 2
C. \[\dfrac{1}{2}\]
D. 1
Answer
216.3k+ views
Hint: In the given question the equation of a limit is given . First, calculate the left-hand limit and right-hand limit. Then equate the limits and find the value of \[L\].
Formula used:
Left hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the left is, \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = L\]
Right hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the right is, \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = L\]
Complete step by step solution:
The given equation of limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\], where \[\lambda \in R - \left\{ {0,1} \right\}\].
The left-hand limit of the given equation is,
\[LHL = \mathop {lim}\limits_{x \to {0^ - }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[LHL = \mathop {lim}\limits_{h \to {0^ - }} \left| {\dfrac{{1 - h - h}}{{\lambda - h - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{{1 - 0 - 0}}{{\lambda - 0 - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
The right-hand limit of the given equation is,
\[RHL = \mathop {lim}\limits_{x \to {0^ + }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[RHL = \mathop {lim}\limits_{h \to {0^ + }} \left| {\dfrac{{1 - h + h}}{{\lambda - h + 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{{\lambda - 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{\lambda }} \right|\]
For existence of a limit, \[RHL = LHL\].
Then,
\[\left| {\dfrac{1}{\lambda }} \right| = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
\[ \Rightarrow \]\[\left| \lambda \right| = \left| {\lambda - 1} \right|\]
Take square on both sides.
\[{\lambda ^2} = {\lambda ^2} - 2\lambda + 1\]
Simplify the above equation.
\[ \Rightarrow \]\[2\lambda = 1\]
\[ \Rightarrow \]\[\lambda = \dfrac{1}{2}\]
Substitute \[\lambda = \dfrac{1}{2}\] in the given equation of a limit.
\[L = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\dfrac{1}{2} - x + \left[ x \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{{1 - 0 + \left| 0 \right|}}{{\dfrac{1}{2} - 0 + \left[ 0 \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{1}{{\dfrac{1}{2}}}\]
\[ \Rightarrow \]\[L = 2\]
Hence the correct option is option B.
Note: Students are often confused with the modulus function. The mathematical representation of the modulus function is, \[f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l}x, if x \ge 0\\ - x, if x < 0\end{array} \right.\].
If the value of \[x\] is less than zero, then the output is minus of the original value. If the value of \[x\] is greater than or equal to zero, then the output is the original value.
Formula used:
Left hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the left is, \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = L\]
Right hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the right is, \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = L\]
Complete step by step solution:
The given equation of limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\], where \[\lambda \in R - \left\{ {0,1} \right\}\].
The left-hand limit of the given equation is,
\[LHL = \mathop {lim}\limits_{x \to {0^ - }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[LHL = \mathop {lim}\limits_{h \to {0^ - }} \left| {\dfrac{{1 - h - h}}{{\lambda - h - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{{1 - 0 - 0}}{{\lambda - 0 - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
The right-hand limit of the given equation is,
\[RHL = \mathop {lim}\limits_{x \to {0^ + }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[RHL = \mathop {lim}\limits_{h \to {0^ + }} \left| {\dfrac{{1 - h + h}}{{\lambda - h + 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{{\lambda - 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{\lambda }} \right|\]
For existence of a limit, \[RHL = LHL\].
Then,
\[\left| {\dfrac{1}{\lambda }} \right| = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
\[ \Rightarrow \]\[\left| \lambda \right| = \left| {\lambda - 1} \right|\]
Take square on both sides.
\[{\lambda ^2} = {\lambda ^2} - 2\lambda + 1\]
Simplify the above equation.
\[ \Rightarrow \]\[2\lambda = 1\]
\[ \Rightarrow \]\[\lambda = \dfrac{1}{2}\]
Substitute \[\lambda = \dfrac{1}{2}\] in the given equation of a limit.
\[L = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\dfrac{1}{2} - x + \left[ x \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{{1 - 0 + \left| 0 \right|}}{{\dfrac{1}{2} - 0 + \left[ 0 \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{1}{{\dfrac{1}{2}}}\]
\[ \Rightarrow \]\[L = 2\]
Hence the correct option is option B.
Note: Students are often confused with the modulus function. The mathematical representation of the modulus function is, \[f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l}x, if x \ge 0\\ - x, if x < 0\end{array} \right.\].
If the value of \[x\] is less than zero, then the output is minus of the original value. If the value of \[x\] is greater than or equal to zero, then the output is the original value.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

