
Let \[\left[ t \right]\] denote the greatest integer \[ \le t\]. If for some \[\lambda \in R - \left\{ {0,1} \right\}\] , \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\]. Then find the value of \[L\].
A. 0
B. 2
C. \[\dfrac{1}{2}\]
D. 1
Answer
162.6k+ views
Hint: In the given question the equation of a limit is given . First, calculate the left-hand limit and right-hand limit. Then equate the limits and find the value of \[L\].
Formula used:
Left hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the left is, \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = L\]
Right hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the right is, \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = L\]
Complete step by step solution:
The given equation of limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\], where \[\lambda \in R - \left\{ {0,1} \right\}\].
The left-hand limit of the given equation is,
\[LHL = \mathop {lim}\limits_{x \to {0^ - }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[LHL = \mathop {lim}\limits_{h \to {0^ - }} \left| {\dfrac{{1 - h - h}}{{\lambda - h - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{{1 - 0 - 0}}{{\lambda - 0 - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
The right-hand limit of the given equation is,
\[RHL = \mathop {lim}\limits_{x \to {0^ + }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[RHL = \mathop {lim}\limits_{h \to {0^ + }} \left| {\dfrac{{1 - h + h}}{{\lambda - h + 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{{\lambda - 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{\lambda }} \right|\]
For existence of a limit, \[RHL = LHL\].
Then,
\[\left| {\dfrac{1}{\lambda }} \right| = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
\[ \Rightarrow \]\[\left| \lambda \right| = \left| {\lambda - 1} \right|\]
Take square on both sides.
\[{\lambda ^2} = {\lambda ^2} - 2\lambda + 1\]
Simplify the above equation.
\[ \Rightarrow \]\[2\lambda = 1\]
\[ \Rightarrow \]\[\lambda = \dfrac{1}{2}\]
Substitute \[\lambda = \dfrac{1}{2}\] in the given equation of a limit.
\[L = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\dfrac{1}{2} - x + \left[ x \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{{1 - 0 + \left| 0 \right|}}{{\dfrac{1}{2} - 0 + \left[ 0 \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{1}{{\dfrac{1}{2}}}\]
\[ \Rightarrow \]\[L = 2\]
Hence the correct option is option B.
Note: Students are often confused with the modulus function. The mathematical representation of the modulus function is, \[f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l}x, if x \ge 0\\ - x, if x < 0\end{array} \right.\].
If the value of \[x\] is less than zero, then the output is minus of the original value. If the value of \[x\] is greater than or equal to zero, then the output is the original value.
Formula used:
Left hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the left is, \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = L\]
Right hand limit: The limit of a function \[f\left( x \right)\], as \[x\] approaches to \[a\] from the right is, \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = L\]
Complete step by step solution:
The given equation of limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}} = L\], where \[\lambda \in R - \left\{ {0,1} \right\}\].
The left-hand limit of the given equation is,
\[LHL = \mathop {lim}\limits_{x \to {0^ - }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[LHL = \mathop {lim}\limits_{h \to {0^ - }} \left| {\dfrac{{1 - h - h}}{{\lambda - h - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{{1 - 0 - 0}}{{\lambda - 0 - 1}}} \right|\]
\[ \Rightarrow \]\[LHL = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
The right-hand limit of the given equation is,
\[RHL = \mathop {lim}\limits_{x \to {0^ + }} \left| {\dfrac{{1 - x + \left| x \right|}}{{\lambda - x + \left[ x \right]}}} \right|\]
\[ \Rightarrow \]\[RHL = \mathop {lim}\limits_{h \to {0^ + }} \left| {\dfrac{{1 - h + h}}{{\lambda - h + 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{{\lambda - 0}}} \right|\]
\[ \Rightarrow \]\[RHL = \left| {\dfrac{1}{\lambda }} \right|\]
For existence of a limit, \[RHL = LHL\].
Then,
\[\left| {\dfrac{1}{\lambda }} \right| = \left| {\dfrac{1}{{\lambda - 1}}} \right|\]
\[ \Rightarrow \]\[\left| \lambda \right| = \left| {\lambda - 1} \right|\]
Take square on both sides.
\[{\lambda ^2} = {\lambda ^2} - 2\lambda + 1\]
Simplify the above equation.
\[ \Rightarrow \]\[2\lambda = 1\]
\[ \Rightarrow \]\[\lambda = \dfrac{1}{2}\]
Substitute \[\lambda = \dfrac{1}{2}\] in the given equation of a limit.
\[L = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - x + \left| x \right|}}{{\dfrac{1}{2} - x + \left[ x \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{{1 - 0 + \left| 0 \right|}}{{\dfrac{1}{2} - 0 + \left[ 0 \right]}}\]
\[ \Rightarrow \]\[L = \dfrac{1}{{\dfrac{1}{2}}}\]
\[ \Rightarrow \]\[L = 2\]
Hence the correct option is option B.
Note: Students are often confused with the modulus function. The mathematical representation of the modulus function is, \[f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l}x, if x \ge 0\\ - x, if x < 0\end{array} \right.\].
If the value of \[x\] is less than zero, then the output is minus of the original value. If the value of \[x\] is greater than or equal to zero, then the output is the original value.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
