
Let $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.$ Then f is an increasing function in the interval:
$
a.{\text{ }}\left[ {\dfrac{{5\pi }}{8},{\text{ }}\dfrac{{3\pi }}{4}} \right] \\
b.{\text{ }}\left[ {\dfrac{\pi }{2},{\text{ }}\dfrac{{5\pi }}{8}} \right] \\
c.{\text{ }}\left[ {\dfrac{\pi }{4},{\text{ }}\dfrac{\pi }{2}} \right] \\
d.{\text{ }}\left[ {0,{\text{ }}\dfrac{\pi }{4}} \right] \\
$
Answer
147.9k+ views
Hint: Check the graph of first derivative of the given function
Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$
We know the function is increasing if its differentiation is greater than or equal to zero.
I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$
$
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\
\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\
$
As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this
$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$
But for increasing function $f'\left( x \right) \geqslant 0$
$
\Rightarrow - \sin 4x \geqslant 0 \\
\Rightarrow \sin 4x \leqslant 0 \\
$
As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$
So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$
$
\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\
\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\
$
Hence, option $c$ is correct.
Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.
Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$
We know the function is increasing if its differentiation is greater than or equal to zero.
I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$
$
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\
\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\
$
As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this
$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$
But for increasing function $f'\left( x \right) \geqslant 0$
$
\Rightarrow - \sin 4x \geqslant 0 \\
\Rightarrow \sin 4x \leqslant 0 \\
$
As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$
So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$
$
\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\
\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\
$
Hence, option $c$ is correct.
Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

JEE Advanced 2025 Notes
