
Let $f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right)} \right)$, where $\dfrac{{ - \pi }}{4} < \theta < \dfrac{\pi }{4}$. Then the value of $\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)$ is
A) 1
B) 2
C) 3
D) 4
Answer
152.4k+ views
Hint: First of all we have to solve the function $f\left( \theta \right)$ by assuming ${\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right) = y$
Use the Pythagoras theorem to find out the necessary trigonometric ratios.
Complete step-by-step answer:
Given, $f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right)} \right)$
Let ${\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right) = y$
$ \Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}$ ….(1)
Now, $f\left( \theta \right) = \sin y$ ….(2)
Substitute $\cos 2\theta = 2{\cos ^2}\theta - 1$ in above equation (1),
$ \Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {2{{\cos }^2}\theta - 1} }} = \dfrac{{Perpendicular}}{{Base}}$
On applying Pythagoras Theorem,
${\left( {Hypo\tan eous} \right)^2} = {\left( {Perpendicular} \right)^2} + {\left( {Base} \right)^2}$
$
{\left( {Hypo\tan eous} \right)^2} = {\left( {\sin \theta } \right)^2} + {\left( {\sqrt {2{{\cos }^2}\theta - 1} } \right)^2} \\
{\left( {Hypo\tan eous} \right)^2} = {\sin ^2}\theta + 2{\cos ^2}\theta - 1 \\
{\left( {Hypo\tan eous} \right)^2} = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\cos ^2}\theta - 1 \\
$
On putting the value of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ in above equation, we get,$
{\left( {Hypo\tan eous} \right)^2} = 1 + {\cos ^2}\theta - 1 \\
$
\[
{\left( {Hypo\tan eous} \right)^2} = {\cos ^2}\theta \\
\]
\[
Hypo\tan eous = \sqrt {{{\cos }^2}\theta } \\
Hypo\tan eous = \cos \theta \\
\]
We know that,
$\sin y = \dfrac{{Perpendicular}}{{Hypo\tan eous}}$$ \Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }}$$ \Rightarrow \sin y = \tan \theta $
$ \Rightarrow \sin y = \tan \theta $
On putting the value of $\sin y$ in equation (2), we get
$f\left( \theta \right) = \tan \theta $
Now, $\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)$= $\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {\tan \theta } \right)$
$ \Rightarrow $$\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)$= 1
Hence, option (A) is the correct answer.
Note: $\cos 2\theta $ has three formulae i.e., $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta $. Here, we use $\cos 2\theta = 2{\cos ^2}\theta - 1$, but we can also use the rest two i.e., ${\cos ^2}\theta - {\sin ^2}\theta $ or $2{\cos ^2}\theta - 1$.
Use the Pythagoras theorem to find out the necessary trigonometric ratios.
Complete step-by-step answer:
Given, $f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right)} \right)$
Let ${\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right) = y$
$ \Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}$ ….(1)
Now, $f\left( \theta \right) = \sin y$ ….(2)
Substitute $\cos 2\theta = 2{\cos ^2}\theta - 1$ in above equation (1),
$ \Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {2{{\cos }^2}\theta - 1} }} = \dfrac{{Perpendicular}}{{Base}}$
On applying Pythagoras Theorem,
${\left( {Hypo\tan eous} \right)^2} = {\left( {Perpendicular} \right)^2} + {\left( {Base} \right)^2}$
$
{\left( {Hypo\tan eous} \right)^2} = {\left( {\sin \theta } \right)^2} + {\left( {\sqrt {2{{\cos }^2}\theta - 1} } \right)^2} \\
{\left( {Hypo\tan eous} \right)^2} = {\sin ^2}\theta + 2{\cos ^2}\theta - 1 \\
{\left( {Hypo\tan eous} \right)^2} = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\cos ^2}\theta - 1 \\
$
On putting the value of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ in above equation, we get,$
{\left( {Hypo\tan eous} \right)^2} = 1 + {\cos ^2}\theta - 1 \\
$
\[
{\left( {Hypo\tan eous} \right)^2} = {\cos ^2}\theta \\
\]
\[
Hypo\tan eous = \sqrt {{{\cos }^2}\theta } \\
Hypo\tan eous = \cos \theta \\
\]
We know that,
$\sin y = \dfrac{{Perpendicular}}{{Hypo\tan eous}}$$ \Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }}$$ \Rightarrow \sin y = \tan \theta $
$ \Rightarrow \sin y = \tan \theta $
On putting the value of $\sin y$ in equation (2), we get
$f\left( \theta \right) = \tan \theta $
Now, $\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)$= $\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {\tan \theta } \right)$
$ \Rightarrow $$\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)$= 1
Hence, option (A) is the correct answer.
Note: $\cos 2\theta $ has three formulae i.e., $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta $. Here, we use $\cos 2\theta = 2{\cos ^2}\theta - 1$, but we can also use the rest two i.e., ${\cos ^2}\theta - {\sin ^2}\theta $ or $2{\cos ^2}\theta - 1$.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
