
A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. Determine the ratio of their lengths.
A. 1 : 1
B. 2 : 1
C. 1 : 4
D. 1 : 2
Answer
154.8k+ views
Hint: In this question, we need to find the ratio of closed and open organ pipes if they are tuned to the same frequency. So, we need to use the following formula. After, equating the equations for closed organ pipe and open organ pipe, we will get the desired result.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
