
A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. Determine the ratio of their lengths.
A. 1 : 1
B. 2 : 1
C. 1 : 4
D. 1 : 2
Answer
219.6k+ views
Hint: In this question, we need to find the ratio of closed and open organ pipes if they are tuned to the same frequency. So, we need to use the following formula. After, equating the equations for closed organ pipe and open organ pipe, we will get the desired result.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

