
A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. Determine the ratio of their lengths.
A. 1 : 1
B. 2 : 1
C. 1 : 4
D. 1 : 2
Answer
213.6k+ views
Hint: In this question, we need to find the ratio of closed and open organ pipes if they are tuned to the same frequency. So, we need to use the following formula. After, equating the equations for closed organ pipe and open organ pipe, we will get the desired result.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Atomic Structure: Definition, Models, and Examples

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

What is the period of small oscillations of the block class 11 physics JEE_Main

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

In a Conical pendulum a string of length 120cm is fixed class 11 physics JEE_Main

