
Let \[b\] be a non-zero real number. Suppose \[f:\mathbb{R} \to \mathbb{R}\] is a differentiable function such that \[f(0) = 1\] . If the derivative \[f'\] of \[f\] satisfies the equation \[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\] . For all \[x \in \mathbb{R}\] , then which of the following statements is/are TRUE?
A. If \[b > 0\] , then \[f\] is an increasing function
B. If \[b < 0\] , then \[f\] is a decreasing function
C. \[f(x)f( - x) = 1\] for all \[x \in \mathbb{R}\]
D. \[f(x) - f( - x) = 0\] for all \[x \in \mathbb{R}\]
Answer
164.1k+ views
Hint: Firstly, we need to simplify the given function and then find the integration constant by using integration properties. After that we simply the integrating value by using the given value \[f(0) = 1\] . Then we find the condition of increasing or decreasing function and the \[f( - x)\] to get required answer.
Formula used:
Trigonometric property: \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]
Exponential property: \[{e^x} \times {e^y} = {e^{x + y}}\]
Integration formula: \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\]
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\]
Logarithm property: \[\ln 1 = 0\]
Complete step by step solution:
Given equation \[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\] ……………….(1)
and \[f(0) = 1\]
Now cross multiplying the equation (1) and we get
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
\[ \Rightarrow \dfrac{{f'(x)}}{{f(x)}} = \dfrac{1}{{{b^2} + {x^2}}}\] ………………………(2)
Integrating the equation (2) and we get
\[ \Rightarrow \int {\dfrac{{f'(x)}}{{f(x)}}} dx = \int {\dfrac{1}{{{b^2} + {x^2}}}}dx \]
Using integration formulas \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\] and \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\], we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + c\]……………(3), where \[c\] is the constant of integration.
Now, given that \[f(0) = 1\], i.e., \[x = 0\]
Substitute \[f(0) = 1\] and we get
\[ \Rightarrow \ln 1 = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{0}{b} + c\]
\[ \Rightarrow 0 = \dfrac{1}{b}{\tan ^{ - 1}}0 + c\]
\[ \Rightarrow 0 = \dfrac{1}{b} \times 0 + c\]
\[ \Rightarrow c = 0\] …………(4)
Substitute the value \[c = 0\] in (3) and we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + 0\]
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b}\]
Taking antilog and we get
\[ \Rightarrow f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now finding \[f( - x)\] , we get
\[ \Rightarrow f( - x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{{ - x}}{b}}}\]
\[ \Rightarrow f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
For option A and B,
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
Here, the differential function is always positive when \[b > 0\] or \[b < 0\].
Therefore, \[f(x) > 0\] is an increasing function for \[b > 0\]
Therefore, option A is correct and B is incorrect.
For option C,
Here \[f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\] and \[f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now \[f(x)f( - x)\]
\[ = \left( {{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right) \times \left( {{e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right)\]
\[ = {e^{\left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right) - \left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right)}}\]
\[ = {e^0}\]
\[ = 1\]
= R.H.S.
Therefore, option C is correct.
For option D,
\[{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} - {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} \ne 0\,\forall \,x \in \mathbb{R}\]
Therefore, option D is incorrect.
Hence, options A and C are correct.
Note: Students need to take care about small properties of logarithm and trigonometry. Like \[\ln 1 = 0\] and \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]. We need to take care while we find the function \[f( - x)\] , we need to substitute \[x\] with \[ - x\] only in the main function. If we make any mistakes in these steps then we got the wrong solution.
Formula used:
Trigonometric property: \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]
Exponential property: \[{e^x} \times {e^y} = {e^{x + y}}\]
Integration formula: \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\]
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\]
Logarithm property: \[\ln 1 = 0\]
Complete step by step solution:
Given equation \[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\] ……………….(1)
and \[f(0) = 1\]
Now cross multiplying the equation (1) and we get
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
\[ \Rightarrow \dfrac{{f'(x)}}{{f(x)}} = \dfrac{1}{{{b^2} + {x^2}}}\] ………………………(2)
Integrating the equation (2) and we get
\[ \Rightarrow \int {\dfrac{{f'(x)}}{{f(x)}}} dx = \int {\dfrac{1}{{{b^2} + {x^2}}}}dx \]
Using integration formulas \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\] and \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\], we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + c\]……………(3), where \[c\] is the constant of integration.
Now, given that \[f(0) = 1\], i.e., \[x = 0\]
Substitute \[f(0) = 1\] and we get
\[ \Rightarrow \ln 1 = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{0}{b} + c\]
\[ \Rightarrow 0 = \dfrac{1}{b}{\tan ^{ - 1}}0 + c\]
\[ \Rightarrow 0 = \dfrac{1}{b} \times 0 + c\]
\[ \Rightarrow c = 0\] …………(4)
Substitute the value \[c = 0\] in (3) and we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + 0\]
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b}\]
Taking antilog and we get
\[ \Rightarrow f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now finding \[f( - x)\] , we get
\[ \Rightarrow f( - x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{{ - x}}{b}}}\]
\[ \Rightarrow f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
For option A and B,
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
Here, the differential function is always positive when \[b > 0\] or \[b < 0\].
Therefore, \[f(x) > 0\] is an increasing function for \[b > 0\]
Therefore, option A is correct and B is incorrect.
For option C,
Here \[f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\] and \[f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now \[f(x)f( - x)\]
\[ = \left( {{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right) \times \left( {{e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right)\]
\[ = {e^{\left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right) - \left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right)}}\]
\[ = {e^0}\]
\[ = 1\]
= R.H.S.
Therefore, option C is correct.
For option D,
\[{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} - {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} \ne 0\,\forall \,x \in \mathbb{R}\]
Therefore, option D is incorrect.
Hence, options A and C are correct.
Note: Students need to take care about small properties of logarithm and trigonometry. Like \[\ln 1 = 0\] and \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]. We need to take care while we find the function \[f( - x)\] , we need to substitute \[x\] with \[ - x\] only in the main function. If we make any mistakes in these steps then we got the wrong solution.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
