Answer
Verified
78.9k+ views
Hint: Firstly, we need to simplify the given function and then find the integration constant by using integration properties. After that we simply the integrating value by using the given value \[f(0) = 1\] . Then we find the condition of increasing or decreasing function and the \[f( - x)\] to get required answer.
Formula used:
Trigonometric property: \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]
Exponential property: \[{e^x} \times {e^y} = {e^{x + y}}\]
Integration formula: \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\]
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\]
Logarithm property: \[\ln 1 = 0\]
Complete step by step solution:
Given equation \[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\] ……………….(1)
and \[f(0) = 1\]
Now cross multiplying the equation (1) and we get
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
\[ \Rightarrow \dfrac{{f'(x)}}{{f(x)}} = \dfrac{1}{{{b^2} + {x^2}}}\] ………………………(2)
Integrating the equation (2) and we get
\[ \Rightarrow \int {\dfrac{{f'(x)}}{{f(x)}}} dx = \int {\dfrac{1}{{{b^2} + {x^2}}}}dx \]
Using integration formulas \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\] and \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\], we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + c\]……………(3), where \[c\] is the constant of integration.
Now, given that \[f(0) = 1\], i.e., \[x = 0\]
Substitute \[f(0) = 1\] and we get
\[ \Rightarrow \ln 1 = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{0}{b} + c\]
\[ \Rightarrow 0 = \dfrac{1}{b}{\tan ^{ - 1}}0 + c\]
\[ \Rightarrow 0 = \dfrac{1}{b} \times 0 + c\]
\[ \Rightarrow c = 0\] …………(4)
Substitute the value \[c = 0\] in (3) and we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + 0\]
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b}\]
Taking antilog and we get
\[ \Rightarrow f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now finding \[f( - x)\] , we get
\[ \Rightarrow f( - x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{{ - x}}{b}}}\]
\[ \Rightarrow f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
For option A and B,
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
Here, the differential function is always positive when \[b > 0\] or \[b < 0\].
Therefore, \[f(x) > 0\] is an increasing function for \[b > 0\]
Therefore, option A is correct and B is incorrect.
For option C,
Here \[f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\] and \[f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now \[f(x)f( - x)\]
\[ = \left( {{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right) \times \left( {{e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right)\]
\[ = {e^{\left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right) - \left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right)}}\]
\[ = {e^0}\]
\[ = 1\]
= R.H.S.
Therefore, option C is correct.
For option D,
\[{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} - {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} \ne 0\,\forall \,x \in \mathbb{R}\]
Therefore, option D is incorrect.
Hence, options A and C are correct.
Note: Students need to take care about small properties of logarithm and trigonometry. Like \[\ln 1 = 0\] and \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]. We need to take care while we find the function \[f( - x)\] , we need to substitute \[x\] with \[ - x\] only in the main function. If we make any mistakes in these steps then we got the wrong solution.
Formula used:
Trigonometric property: \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]
Exponential property: \[{e^x} \times {e^y} = {e^{x + y}}\]
Integration formula: \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\]
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\]
Logarithm property: \[\ln 1 = 0\]
Complete step by step solution:
Given equation \[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\] ……………….(1)
and \[f(0) = 1\]
Now cross multiplying the equation (1) and we get
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
\[ \Rightarrow \dfrac{{f'(x)}}{{f(x)}} = \dfrac{1}{{{b^2} + {x^2}}}\] ………………………(2)
Integrating the equation (2) and we get
\[ \Rightarrow \int {\dfrac{{f'(x)}}{{f(x)}}} dx = \int {\dfrac{1}{{{b^2} + {x^2}}}}dx \]
Using integration formulas \[\int {\dfrac{{f'(x)}}{{f(x)}}} dx = \ln f(x)\] and \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a}\], we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + c\]……………(3), where \[c\] is the constant of integration.
Now, given that \[f(0) = 1\], i.e., \[x = 0\]
Substitute \[f(0) = 1\] and we get
\[ \Rightarrow \ln 1 = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{0}{b} + c\]
\[ \Rightarrow 0 = \dfrac{1}{b}{\tan ^{ - 1}}0 + c\]
\[ \Rightarrow 0 = \dfrac{1}{b} \times 0 + c\]
\[ \Rightarrow c = 0\] …………(4)
Substitute the value \[c = 0\] in (3) and we get
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b} + 0\]
\[ \Rightarrow \ln f(x) = \dfrac{1}{b}{\tan ^{ - 1}}\dfrac{x}{b}\]
Taking antilog and we get
\[ \Rightarrow f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now finding \[f( - x)\] , we get
\[ \Rightarrow f( - x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{{ - x}}{b}}}\]
\[ \Rightarrow f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
For option A and B,
\[f'(x) = \dfrac{{f(x)}}{{{b^2} + {x^2}}}\]
Here, the differential function is always positive when \[b > 0\] or \[b < 0\].
Therefore, \[f(x) > 0\] is an increasing function for \[b > 0\]
Therefore, option A is correct and B is incorrect.
For option C,
Here \[f(x) = {e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\] and \[f( - x) = {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}\]
Now \[f(x)f( - x)\]
\[ = \left( {{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right) \times \left( {{e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}}} \right)\]
\[ = {e^{\left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right) - \left( {\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}} \right)}}\]
\[ = {e^0}\]
\[ = 1\]
= R.H.S.
Therefore, option C is correct.
For option D,
\[{e^{\dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} - {e^{ - \dfrac{1}{b}{{\tan }^{ - 1}}\dfrac{x}{b}}} \ne 0\,\forall \,x \in \mathbb{R}\]
Therefore, option D is incorrect.
Hence, options A and C are correct.
Note: Students need to take care about small properties of logarithm and trigonometry. Like \[\ln 1 = 0\] and \[{\tan ^{ - 1}}( - x) = - {\tan ^{ - 1}}x\]. We need to take care while we find the function \[f( - x)\] , we need to substitute \[x\] with \[ - x\] only in the main function. If we make any mistakes in these steps then we got the wrong solution.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main