
Let \[\alpha \] be the angle between the lines whose direction cosines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\]. Then what is the value of \[\sin^{4}\alpha + \cos^{4}\alpha \] ?
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{2}\]
C. \[\dfrac{5}{8}\]
D. \[\dfrac{3}{8}\]
Answer
215.7k+ views
Hint: First, Simplify the given equations and find the values of \[l\], and \[m\]. Substitute the values in the equation and find the values of other variables. Since the direction cosines satisfy the equations, so the values of the variables are the direction ratios. After that, use the formula of the angle between the lines and find the value of \[\cos\alpha \]. Then use the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and calculate the value of \[\sin^{2}\alpha \]. In the end, add the fourth power of both values to get the required answer
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

