
Let \[\alpha \] be the angle between the lines whose direction cosines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\]. Then what is the value of \[\sin^{4}\alpha + \cos^{4}\alpha \] ?
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{2}\]
C. \[\dfrac{5}{8}\]
D. \[\dfrac{3}{8}\]
Answer
163.2k+ views
Hint: First, Simplify the given equations and find the values of \[l\], and \[m\]. Substitute the values in the equation and find the values of other variables. Since the direction cosines satisfy the equations, so the values of the variables are the direction ratios. After that, use the formula of the angle between the lines and find the value of \[\cos\alpha \]. Then use the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and calculate the value of \[\sin^{2}\alpha \]. In the end, add the fourth power of both values to get the required answer
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
