
Let \[\alpha \] be the angle between the lines whose direction cosines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\]. Then what is the value of \[\sin^{4}\alpha + \cos^{4}\alpha \] ?
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{2}\]
C. \[\dfrac{5}{8}\]
D. \[\dfrac{3}{8}\]
Answer
232.8k+ views
Hint: First, Simplify the given equations and find the values of \[l\], and \[m\]. Substitute the values in the equation and find the values of other variables. Since the direction cosines satisfy the equations, so the values of the variables are the direction ratios. After that, use the formula of the angle between the lines and find the value of \[\cos\alpha \]. Then use the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and calculate the value of \[\sin^{2}\alpha \]. In the end, add the fourth power of both values to get the required answer
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

