
Let $a,\;b,\;c \in \mathbb{R}$be such that ${a^2} + {b^2} + {c^2} = 1$. If $a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)$, where $\theta = \dfrac{\pi }{9},$ then the angle between the vectors $a\widehat i + b\widehat j + c\widehat k$ and $b\widehat i + c\widehat j + a\widehat k$ is:
(A) $\dfrac{\pi }{2}$
(B) $\dfrac{{2\pi }}{3}$
(C) $\dfrac{\pi }{9}$
(D) $0$
Answer
161.7k+ views
Hint: In order to find out the angle between two vectors we will use the dot product method. First, we will find the dot product of two vectors $\overrightarrow u $and $\overrightarrow v $. Then, we will find the magnitude of $\overrightarrow u $and $\overrightarrow v $. Next, we will use the cosine formula used in finding the angle between two vectors. Substitute the dot product and magnitude obtained above to get the final answer.
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
