
Let $a,\;b,\;c \in \mathbb{R}$be such that ${a^2} + {b^2} + {c^2} = 1$. If $a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)$, where $\theta = \dfrac{\pi }{9},$ then the angle between the vectors $a\widehat i + b\widehat j + c\widehat k$ and $b\widehat i + c\widehat j + a\widehat k$ is:
(A) $\dfrac{\pi }{2}$
(B) $\dfrac{{2\pi }}{3}$
(C) $\dfrac{\pi }{9}$
(D) $0$
Answer
232.8k+ views
Hint: In order to find out the angle between two vectors we will use the dot product method. First, we will find the dot product of two vectors $\overrightarrow u $and $\overrightarrow v $. Then, we will find the magnitude of $\overrightarrow u $and $\overrightarrow v $. Next, we will use the cosine formula used in finding the angle between two vectors. Substitute the dot product and magnitude obtained above to get the final answer.
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

