
Let $a,\;b,\;c \in \mathbb{R}$be such that ${a^2} + {b^2} + {c^2} = 1$. If $a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)$, where $\theta = \dfrac{\pi }{9},$ then the angle between the vectors $a\widehat i + b\widehat j + c\widehat k$ and $b\widehat i + c\widehat j + a\widehat k$ is:
(A) $\dfrac{\pi }{2}$
(B) $\dfrac{{2\pi }}{3}$
(C) $\dfrac{\pi }{9}$
(D) $0$
Answer
217.8k+ views
Hint: In order to find out the angle between two vectors we will use the dot product method. First, we will find the dot product of two vectors $\overrightarrow u $and $\overrightarrow v $. Then, we will find the magnitude of $\overrightarrow u $and $\overrightarrow v $. Next, we will use the cosine formula used in finding the angle between two vectors. Substitute the dot product and magnitude obtained above to get the final answer.
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Formula Used:
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
$\left[ {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\cos \left( {\theta + \pi } \right) = - \cos \theta } \right]$
Complete step by step Solution:
We are given that,
$\overrightarrow u = a\widehat i + b\widehat j + c\widehat k$ ………………equation $(1)$
$\overrightarrow v = b\widehat i + c\widehat j + a\widehat k$ ………………equation $(2)$
Let us find the dot product of $\overrightarrow u $ and $\overrightarrow v $
$\overrightarrow u .\overrightarrow v = (ab) + (bc) + (ca)$ ………………equation $(3)$
$[\because $Multiply the $\widehat i,\widehat j,\widehat k$coefficients of both $\overrightarrow u $ and $\overrightarrow v $ separately$]$
Now, we will find the magnitude of both vectors.
$\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(4)$
$\left| {\overrightarrow v } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $ ………………equation $(5)$
Using the cosine formula to find the angle between two vectors using the dot product method,
$\cos \theta = \dfrac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}$
Substituting the equations $(3)$, $(4)$ and $(5)$ in the above formula
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)\left( {\sqrt {{a^2} + {b^2} + {c^2}} } \right)}}\]
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{{\left( {{a^2} + {b^2} + {c^2}} \right)}}\]
We are given that \[{a^2} + {b^2} + {c^2} = 1,\] substituting it in above equation
\[\cos \theta = \dfrac{{(ab) + (bc) + (ca)}}{1}\]
Multiply the numerator and denominator by $abc,$
\[\cos \theta = abc\left( {\dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}} + \dfrac{{ca}}{{abc}}} \right)\]
Simplifying it,
\[\cos \theta = abc\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right)\] ………………equation $(6)$
Given,
$a\;\cos \theta = b\;\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right) = c\;\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right) = \lambda $(say)
We will use this equation to find the value of $a,b,c$
$a = \dfrac{{\cos \theta }}{\lambda }$
$b = \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda }$
$c = \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }$
Substituting the value of $a,b,c$ in equation $(6)$
$\cos \theta = abc\left[ {\dfrac{{\cos \theta }}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{2\pi }}{3}} \right)}}{\lambda } + \dfrac{{\cos \left( {\theta + \dfrac{{4\pi }}{3}} \right)}}{\lambda }} \right]$
Applying trigonometric identity to simplify the equation,
$\cos \theta = \dfrac{{abc}}{\lambda }\left[ {\cos \theta + 2\cos \left( {\theta + \pi } \right)\cos \left( {\dfrac{\pi }{3}} \right)} \right]$ $\left[ {\because \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta + 2( - \cos \theta )\left( {\dfrac{1}{2}} \right)} \right]$ $\left[ {\because \cos \left( {\theta + \pi } \right) = - \cos \theta } \right],$ $\left[ {\because \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}} \right]$
Solving it further,
$\cos \theta = \dfrac{{abc}}{2}\left[ {\cos \theta - \cos \theta } \right]$
\[\cos \theta = 0\]
Now, at last, finding $\theta $ to get the correct answer,
$\cos \theta = \cos \left( {\dfrac{\pi }{2}} \right)$ $\left[ {\because \cos \left( {\dfrac{\pi }{2}} \right) = 0} \right]$
On comparing the angles of L.H.S and R.H.S,
$\theta = \dfrac{\pi }{2}$
Hence, the correct option is A.
Note: Here, we have used the dot product using the cosine formula to find the angle between two vectors which is also known as the scalar product of the two vectors. Also, for any two vectors $a$ and $b$, if $a.b$is positive, then the angle lies between ${0^ \circ }$ and ${90^ \circ };$ if $a.b$ is negative, then the angle lies between ${90^ \circ }$ and ${180^ \circ }.$
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

