
Let $A = \begin{bmatrix}x&1\\1&0\end{bmatrix},x \in \mathbb{R}$ and ${A^4} = \left[ {{a_{ij}}} \right]$. If ${a_{11}} = 109$, then ${a_{22}}$ is equal to:
Answer
161.7k+ views
Hint: In this question, we have to find the value of ${a_{22}}$ by using the given matrix $A = \begin{bmatrix}x&1\\1&0\end{bmatrix},x \in \mathbb{R}$. Firstly, we will find the value of ${A^4}$. We can rewrite the ${A^4}$ as ${A^2}{A^2}$ and find the value of ${A^2}$ then the result obtained will be multiplied twice to arrive the value of ${A^4}$. Then compare the values of ${a_{11}}$ and ${a_{22}}$ with ${A^4}$.
Formula Used:
The basic matrix multiplication formula are given as
1. $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix}\times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix}= \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$
Complete step by step solution:
Given that the matrix is$A = \begin{bmatrix}x&1\\1&0\end{bmatrix},x \in \mathbb{R}$
Firstly, we will find the value of ${A^4}$.
We try to rewrite the expression ${A^4}$ in such a way that the simplification becomes easier.
So, ${A^4}$ can be rewritten as ${A^2}{A^2}$.
Now, we will find the value of ${A^2}$ by using the matrix multiplication formula $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix} \times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix} = \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$, we get
${A^2} = \begin{bmatrix}x&1\\1&0\end{bmatrix} \times \begin{bmatrix}x&1\\1&0\end{bmatrix} \\ {A^2} = \begin{bmatrix}{x\left( x \right) + 1\left( 1 \right)}&{x\left( 1 \right) + 1\left( 0 \right)}\\{1\left( x \right) + 0\left( 1 \right)}&{1\left( 1 \right) + 0\left( 0 \right)}\end{bmatrix}$
Further, we will simplify the above matrix, we get
${A^2} = \begin{bmatrix}{{x^2} + 1}&{x + 0}\\{x + 0}&{1 + 0}\end{bmatrix} \\ {A^2} = \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix}$
Furthermore, we will find the value of ${A^4}$ by using the matrix multiplication formula $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix} \times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix} = \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$, we get
${A^4} = {A^2}{A^2}\\{A^4} = \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix} \times \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix}\\{A^4} = \begin{bmatrix}{\left( {{x^2} + 1} \right)\left( {{x^2} + 1} \right) + x\left( x \right)}&{\left( {{x^2} + 1} \right)x + x\left( 1 \right)}\\{x\left( {{x^2} + 1} \right) + 1\left( x \right)}&{x\left( x \right) + 1\left( 1 \right)}\end{bmatrix}$
Now, we will simplify the above matrix, we get
${A^4} = \begin{bmatrix}{{x^4} + {x^2} + {x^2} + 1 + {x^2}}&{{x^3} + x + x}\\{{x^3} + x + x}&{{x^2} + 1}\end{bmatrix}\\{A^4} = \begin{bmatrix}{{x^4}3 + {x^2} + 1}&{{x^3} + 2x}\\{{x^3} + 2x}&{{x^2} + 1}\end{bmatrix}$
As we know that the general terms of the matrix can be written as $A = \begin{bmatrix}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{bmatrix}$ and we are given that ${a_{11}} = 109$.
So, we will compare the value of ${a_{11}}$ with matrix ${A^4}$, we get
${a_{11}} = {x^4} + 3{x^2} + 1\\109 = {x^4} + 3{x^2} + 1$
Now, we will simplify the above equation using factorization method, we get
${x^4} + 3{x^2} - 108 = 0\\{x^4} + 12{x^2} - 9{x^2} - 108 = 0\\{x^2}\left( {{x^2} + 12} \right) - 9\left( {{x^2} + 12} \right) = 0$
Further, we will factor out the common factor, we get
$\left( {{x^2} + 12} \right)\left( {{x^2} - 9} \right) = 0\\{x^2} = - 12,9$
As it is given that $x \in R$ so ${x^2} = - 12$ cannot be possible because the value under root cannot be negative.
Thus, $x = \pm 3$.
Now, we will find the value of ${a_{22}}$ by comparing it with matrix ${A^4}$, we get
${a_{22}} = {x^2} + 1$
Further, substitute ${x^2} = 9$, we get
${a_{22}} = 9 + 1\\{a_{22}} = 10$
Hence, the value of ${a_{22}}$ is $10$.
Note: Try to reduce the given terms so that we can solve them easily. Otherwise find the terms like ${A^2},{A^3}$ and ${A^4}$ to reduce the chances of mistakes.
Formula Used:
The basic matrix multiplication formula are given as
1. $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix}\times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix}= \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$
Complete step by step solution:
Given that the matrix is$A = \begin{bmatrix}x&1\\1&0\end{bmatrix},x \in \mathbb{R}$
Firstly, we will find the value of ${A^4}$.
We try to rewrite the expression ${A^4}$ in such a way that the simplification becomes easier.
So, ${A^4}$ can be rewritten as ${A^2}{A^2}$.
Now, we will find the value of ${A^2}$ by using the matrix multiplication formula $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix} \times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix} = \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$, we get
${A^2} = \begin{bmatrix}x&1\\1&0\end{bmatrix} \times \begin{bmatrix}x&1\\1&0\end{bmatrix} \\ {A^2} = \begin{bmatrix}{x\left( x \right) + 1\left( 1 \right)}&{x\left( 1 \right) + 1\left( 0 \right)}\\{1\left( x \right) + 0\left( 1 \right)}&{1\left( 1 \right) + 0\left( 0 \right)}\end{bmatrix}$
Further, we will simplify the above matrix, we get
${A^2} = \begin{bmatrix}{{x^2} + 1}&{x + 0}\\{x + 0}&{1 + 0}\end{bmatrix} \\ {A^2} = \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix}$
Furthermore, we will find the value of ${A^4}$ by using the matrix multiplication formula $\begin{bmatrix}{{a_1}}&{{b_1}}\\{{c_1}}&{{d_1}}\end{bmatrix} \times \begin{bmatrix}{{a_2}}&{{b_2}}\\{{c_2}}&{{d_2}}\end{bmatrix} = \begin{bmatrix}{{a_1}{a_2} + {b_1}{c_2}}&{{a_1}{b_2} + {b_1}{d_2}}\\{{c_1}{a_2} + {d_1}{c_2}}&{{c_1}{b_2} + {d_1}{d_2}}\end{bmatrix}$, we get
${A^4} = {A^2}{A^2}\\{A^4} = \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix} \times \begin{bmatrix}{{x^2} + 1}&x\\x&1\end{bmatrix}\\{A^4} = \begin{bmatrix}{\left( {{x^2} + 1} \right)\left( {{x^2} + 1} \right) + x\left( x \right)}&{\left( {{x^2} + 1} \right)x + x\left( 1 \right)}\\{x\left( {{x^2} + 1} \right) + 1\left( x \right)}&{x\left( x \right) + 1\left( 1 \right)}\end{bmatrix}$
Now, we will simplify the above matrix, we get
${A^4} = \begin{bmatrix}{{x^4} + {x^2} + {x^2} + 1 + {x^2}}&{{x^3} + x + x}\\{{x^3} + x + x}&{{x^2} + 1}\end{bmatrix}\\{A^4} = \begin{bmatrix}{{x^4}3 + {x^2} + 1}&{{x^3} + 2x}\\{{x^3} + 2x}&{{x^2} + 1}\end{bmatrix}$
As we know that the general terms of the matrix can be written as $A = \begin{bmatrix}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{bmatrix}$ and we are given that ${a_{11}} = 109$.
So, we will compare the value of ${a_{11}}$ with matrix ${A^4}$, we get
${a_{11}} = {x^4} + 3{x^2} + 1\\109 = {x^4} + 3{x^2} + 1$
Now, we will simplify the above equation using factorization method, we get
${x^4} + 3{x^2} - 108 = 0\\{x^4} + 12{x^2} - 9{x^2} - 108 = 0\\{x^2}\left( {{x^2} + 12} \right) - 9\left( {{x^2} + 12} \right) = 0$
Further, we will factor out the common factor, we get
$\left( {{x^2} + 12} \right)\left( {{x^2} - 9} \right) = 0\\{x^2} = - 12,9$
As it is given that $x \in R$ so ${x^2} = - 12$ cannot be possible because the value under root cannot be negative.
Thus, $x = \pm 3$.
Now, we will find the value of ${a_{22}}$ by comparing it with matrix ${A^4}$, we get
${a_{22}} = {x^2} + 1$
Further, substitute ${x^2} = 9$, we get
${a_{22}} = 9 + 1\\{a_{22}} = 10$
Hence, the value of ${a_{22}}$ is $10$.
Note: Try to reduce the given terms so that we can solve them easily. Otherwise find the terms like ${A^2},{A^3}$ and ${A^4}$ to reduce the chances of mistakes.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
