
Let \[A\] be a \[3 \times 3\] matrix and determinant of the matrix is 4. Let \[{R_i}\] denote the \[{i^{th}}\] row of \[A\]. If matrix \[B\] is obtained by performing the row operation \[{R_2} \to 2{R_2} + 5{R_3}\] on a matrix \[2A\]. Then find the determinant of matrix \[B\].
A. 64
B. 16
C. 80
D. 128
Answer
216.3k+ views
Hint In the given question, a \(3 \times 3\) matrix \(A\) and its determinant are given. By performing the given operations, we will find the matrix \(2A\) and matrix \(B\). After that we will perform a row operation \[{R_2} \to 2{R_2} + 5{R_3}\]. Then we will apply the row operation \[{R_2} \to {R_2} - 5{R_3}\]. Then by using the determinant formula of a \(3 \times 3\) matrix, we will get the determinant of matrix \(B\).
Formula used
Determinant of a \[3 \times 3\] matrix \[M = \left( {\begin{array}{*{20}{c}}{m{a_{11}}}&{m{a_{12}}}&{m{a_{13}}}\\{n{a_{21}}}&{n{a_{22}}}&{n{a_{23}}}\\{p{a_{31}}}&{p{a_{32}}}&{p{a_{33}}}\end{array}} \right)\] is,
\[\left| M \right| = m \times n \times p \times \left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
Complete step by step solution:
It is given that the order of matrix \[A\] is \[3 \times 3\] and value of the determinant is 4.
Let consider
\[A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right)\]
Then the matrix \[2A\] is,
\[2A = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{2{a_{21}}}&{2{a_{22}}}&{2{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
Now perform the given row operation \[{R_2} \to 2{R_2} + 5{R_3}\] on matrix \[2A\] and obtain the matrix \[B\].
\[B = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}} + 10{a_{31}}}&{4{a_{22}} + 10{a_{32}}}&{4{a_{23}} + 10{a_{33}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
If a multiple of a row is subtracted from a row, then the value of determinant is remaining the same.
Perform the row operation \[{R_2} \to {R_2} - 5{R_3}\]
\[B = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}}}&{4{a_{22}}}&{4{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
Now calculate the determinant of the matrix \[B\].
\[\left| B \right| = \left| {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}}}&{4{a_{22}}}&{4{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right|\]
Factor out the common numbers from each row.
\[\left| B \right| = 2 \times 4 \times 2 \times \left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| B \right| = 16\left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| B \right| = 16 \times 4\] [Since \[\left| A \right| = 4\]]
\[ \Rightarrow \]\[\left| B \right| = 64\]
Hence the correct option is A.
Note: Students often do a common mistake that they calculate the value of determinant \[\left| B \right| = \left| {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}} + 10{a_{31}}}&{4{a_{22}} + 10{a_{32}}}&{4{a_{23}} + 10{a_{33}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right|\] by expanding method. They don’t perform the row operation \[{R_2} \to {R_2} - 5{R_3}\]. Don’t reach the required solution.
Formula used
Determinant of a \[3 \times 3\] matrix \[M = \left( {\begin{array}{*{20}{c}}{m{a_{11}}}&{m{a_{12}}}&{m{a_{13}}}\\{n{a_{21}}}&{n{a_{22}}}&{n{a_{23}}}\\{p{a_{31}}}&{p{a_{32}}}&{p{a_{33}}}\end{array}} \right)\] is,
\[\left| M \right| = m \times n \times p \times \left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
Complete step by step solution:
It is given that the order of matrix \[A\] is \[3 \times 3\] and value of the determinant is 4.
Let consider
\[A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right)\]
Then the matrix \[2A\] is,
\[2A = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{2{a_{21}}}&{2{a_{22}}}&{2{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
Now perform the given row operation \[{R_2} \to 2{R_2} + 5{R_3}\] on matrix \[2A\] and obtain the matrix \[B\].
\[B = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}} + 10{a_{31}}}&{4{a_{22}} + 10{a_{32}}}&{4{a_{23}} + 10{a_{33}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
If a multiple of a row is subtracted from a row, then the value of determinant is remaining the same.
Perform the row operation \[{R_2} \to {R_2} - 5{R_3}\]
\[B = \left( {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}}}&{4{a_{22}}}&{4{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right)\]
Now calculate the determinant of the matrix \[B\].
\[\left| B \right| = \left| {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}}}&{4{a_{22}}}&{4{a_{23}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right|\]
Factor out the common numbers from each row.
\[\left| B \right| = 2 \times 4 \times 2 \times \left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| B \right| = 16\left| {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| B \right| = 16 \times 4\] [Since \[\left| A \right| = 4\]]
\[ \Rightarrow \]\[\left| B \right| = 64\]
Hence the correct option is A.
Note: Students often do a common mistake that they calculate the value of determinant \[\left| B \right| = \left| {\begin{array}{*{20}{c}}{2{a_{11}}}&{2{a_{12}}}&{2{a_{13}}}\\{4{a_{21}} + 10{a_{31}}}&{4{a_{22}} + 10{a_{32}}}&{4{a_{23}} + 10{a_{33}}}\\{2{a_{31}}}&{2{a_{32}}}&{2{a_{33}}}\end{array}} \right|\] by expanding method. They don’t perform the row operation \[{R_2} \to {R_2} - 5{R_3}\]. Don’t reach the required solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

