
Let $0 < x < \dfrac{\pi }{2}$, then $\sec 2x - \tan 2x$ is equal to
$
(a){\text{ tan}}\left( {x - \dfrac{\pi }{4}} \right) \\
(b){\text{ tan}}\left( {\dfrac{\pi }{4} - x} \right) \\
(c){\text{ tan}}\left( {x + \dfrac{\pi }{4}} \right) \\
(d){\text{ ta}}{{\text{n}}^2}\left( {x + \dfrac{\pi }{4}} \right) \\
$
Answer
144.9k+ views
Hint: In this question we have to evaluate the given trigonometric expression so use basic trigonometric identities like $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$and $\sin 2x = 2\sin x\cos x$ in order to simplify the given expression. This will help you get the right answer.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
