
Let $0 < x < \dfrac{\pi }{2}$, then $\sec 2x - \tan 2x$ is equal to
$
(a){\text{ tan}}\left( {x - \dfrac{\pi }{4}} \right) \\
(b){\text{ tan}}\left( {\dfrac{\pi }{4} - x} \right) \\
(c){\text{ tan}}\left( {x + \dfrac{\pi }{4}} \right) \\
(d){\text{ ta}}{{\text{n}}^2}\left( {x + \dfrac{\pi }{4}} \right) \\
$
Answer
218.1k+ views
Hint: In this question we have to evaluate the given trigonometric expression so use basic trigonometric identities like $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$and $\sin 2x = 2\sin x\cos x$ in order to simplify the given expression. This will help you get the right answer.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Electromagnetic Waves and Their Importance

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

Other Pages
JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Amortization Calculator – Loan Schedule, EMI & Table

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions: Practice Problems, Answers & Exam Tricks

Mahaparinirvana Diwas 2025: Date, History & Significance

Lionel Messi Biography: Achievements, Records & Early Life

