
\[\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...100\] terms.
(a) \[\frac{{25}}{{160}}\]
(b) \[\frac{1}{6}\]
(c) \[\frac{{25}}{{151}}\]
(d) \[\frac{{25}}{{152}}\]
Answer
219.6k+ views
Hint: Use all the basic fundamentals of the sequence and series. According to the given question, series 2, 5, 8 ….. and 5,8,11…. are in arithmetic progression(A.P) because differences between the two adjacent terms are constant.
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

