
\[\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...100\] terms.
(a) \[\frac{{25}}{{160}}\]
(b) \[\frac{1}{6}\]
(c) \[\frac{{25}}{{151}}\]
(d) \[\frac{{25}}{{152}}\]
Answer
161.4k+ views
Hint: Use all the basic fundamentals of the sequence and series. According to the given question, series 2, 5, 8 ….. and 5,8,11…. are in arithmetic progression(A.P) because differences between the two adjacent terms are constant.
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
