
Law of mass action is applicable to :
(A) homogeneous chemical equilibrium only
(B) heterogeneous chemical equilibrium
(C) physical equilibrium
(D) both homogeneous and heterogeneous chemical equilibrium
Answer
221.4k+ views
Hint: The law of mass action says that the rate at which a chemical reaction will occur depends upon the concentration of the reacting species present. The reacting species can be present in any state whether solid, liquid or gases and the state can be different from that of products.
Complete step by step solution:
First, let us see what the law of mass action is.
The law of mass action states that the rate of a chemical reaction is proportional to the concentrations of the reacting substances.
The mass that is actually reacting is called the active mass.
The law explains the behaviour of solutions in the equilibrium. This law provides a relationship between the concentrations of electron holes and free electrons when the semiconductor is in state of thermal equilibrium. Thus, it is widely used in the manufacture of electronics and semiconductors.
Most of the chemical reactions are reversible in nature and many times an equilibrium state is present at which the concentration of reactant is equal to the concentration of the product. At this point, the rate of the forward reaction is equal to the rate of backward reaction. This is the equilibrium point.
Let us take a example-
$N{a_2}C{O_3} + CaC{l_2} \rightleftharpoons CaC{O_3} + 2NaCl$
In this reaction, all the reactants and products are in the same state i.e. aqueous state. So, this is a homogeneous system.
The equilibrium constant of this reaction can be written as -
${K_C} = \dfrac{{[CaC{O_3}][NaCl]}}{{[N{a_2}C{O_3}][CaC{l_2}]}}$
Where ${K_C}$ is the equilibrium constant.
Similarly, we can find the equilibrium constant with any heterogeneous reaction.
Thus, the law is applicable for both the homogeneous and heterogeneous chemical equilibrium.
So, option (D) is the correct answer.
Note: The reaction in which reactants and products are in the same state represents the homogeneous system while the reaction in which the reactants and products are in different states represent the heterogeneous system. It does not matter the state of reacting species until activation energy for the reaction to occur is present.
Complete step by step solution:
First, let us see what the law of mass action is.
The law of mass action states that the rate of a chemical reaction is proportional to the concentrations of the reacting substances.
The mass that is actually reacting is called the active mass.
The law explains the behaviour of solutions in the equilibrium. This law provides a relationship between the concentrations of electron holes and free electrons when the semiconductor is in state of thermal equilibrium. Thus, it is widely used in the manufacture of electronics and semiconductors.
Most of the chemical reactions are reversible in nature and many times an equilibrium state is present at which the concentration of reactant is equal to the concentration of the product. At this point, the rate of the forward reaction is equal to the rate of backward reaction. This is the equilibrium point.
Let us take a example-
$N{a_2}C{O_3} + CaC{l_2} \rightleftharpoons CaC{O_3} + 2NaCl$
In this reaction, all the reactants and products are in the same state i.e. aqueous state. So, this is a homogeneous system.
The equilibrium constant of this reaction can be written as -
${K_C} = \dfrac{{[CaC{O_3}][NaCl]}}{{[N{a_2}C{O_3}][CaC{l_2}]}}$
Where ${K_C}$ is the equilibrium constant.
Similarly, we can find the equilibrium constant with any heterogeneous reaction.
Thus, the law is applicable for both the homogeneous and heterogeneous chemical equilibrium.
So, option (D) is the correct answer.
Note: The reaction in which reactants and products are in the same state represents the homogeneous system while the reaction in which the reactants and products are in different states represent the heterogeneous system. It does not matter the state of reacting species until activation energy for the reaction to occur is present.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

