
Kinetic energy of the molecules is directly proportional to the
A) Temperature
B) Pressure
C) Both (A) and (B)
D) Atmospheric pressure
Answer
135k+ views
Hint: Check the relation of kinetic energy with gas constant, temperature and Avogadro’s number and determine the proportionality. Since Kinetic Energy is the measure of average energy possessed by the molecules due to their motion and temperature is also defined in the same way, so it can be inferred.
Complete step by step answer:
Symbols used:
$P = $ pressure of the gas
$V = $ volume of the gas
$E = $ kinetic energy of the molecules
$n = $ number of moles
$R = $ universal gas constant
$T = $ temperature of the gas
${N_A} = $ Avogadro’s number
From the kinetic interpretation of temperature, we know that
\[PV = \dfrac{2}{3}E\]
$E = \dfrac{3}{2}PV$
From the ideal gas equation we know that
$PV = nRT$
Therefore,
$E = \dfrac{3}{2}nRT$
Dividing both sides by $N$, we get
$\dfrac{E}{N} = \dfrac{3}{2}{k_B}T$
where ${k_B} = \dfrac{R}{{{N_A}}}$, also known as Boltzmann constant ( a universal constant )
Thus,
$K = \dfrac{3}{2}{k_B}T$
Therefore, we can conclude that the average kinetic energy of the molecules is directly proportional to the temperature of the gas and is independent of pressure, volume or the nature of the gas. This fundamental result thus relates the temperature of the gas to the average kinetic energy of a molecule.
The answer is option A.
Note: These results are valid only for an ideal gas and not real gases since they do not follow the kinetic theory of gases. The result can be remembered and can be applied directly at other places, i.e., we can see that the kinetic energy is independent of pressure, volume and nature of the ideal gas and is only dependent on temperature. This is an important result since it relates a fundamental thermodynamic variable (temperature) to the molecular quantity, the average kinetic energy of a molecule.
Complete step by step answer:
Symbols used:
$P = $ pressure of the gas
$V = $ volume of the gas
$E = $ kinetic energy of the molecules
$n = $ number of moles
$R = $ universal gas constant
$T = $ temperature of the gas
${N_A} = $ Avogadro’s number
From the kinetic interpretation of temperature, we know that
\[PV = \dfrac{2}{3}E\]
$E = \dfrac{3}{2}PV$
From the ideal gas equation we know that
$PV = nRT$
Therefore,
$E = \dfrac{3}{2}nRT$
Dividing both sides by $N$, we get
$\dfrac{E}{N} = \dfrac{3}{2}{k_B}T$
where ${k_B} = \dfrac{R}{{{N_A}}}$, also known as Boltzmann constant ( a universal constant )
Thus,
$K = \dfrac{3}{2}{k_B}T$
Therefore, we can conclude that the average kinetic energy of the molecules is directly proportional to the temperature of the gas and is independent of pressure, volume or the nature of the gas. This fundamental result thus relates the temperature of the gas to the average kinetic energy of a molecule.
The answer is option A.
Note: These results are valid only for an ideal gas and not real gases since they do not follow the kinetic theory of gases. The result can be remembered and can be applied directly at other places, i.e., we can see that the kinetic energy is independent of pressure, volume and nature of the ideal gas and is only dependent on temperature. This is an important result since it relates a fundamental thermodynamic variable (temperature) to the molecular quantity, the average kinetic energy of a molecule.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
