
Inverse of the matrix $\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2& 0 & 1 \\ \end{bmatrix}$ is
A. $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
B. $\begin{bmatrix} 1 & -3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & 7 \\ \end{bmatrix}$
C. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
D. $\begin{bmatrix} 1 & -3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & -7 \\ \end{bmatrix}$
Answer
232.8k+ views
Hint: You can use two techniques to determine a matrix's inverse. By utilising an adjoint of a matrix and simple operations, it is possible to calculate the inverse of a matrix. Row or column transformations can carry out the basic functions on a matrix. Additionally, the adjoint and determinant of the matrix can be used to apply the inverse of the matrix formula to calculate the inverse of a matrix.
Formula Used:
Inverse Matrix Formula$=A^{-1}=\frac{1}{|A|}.AdjA$
Complete step by step Solution:
Let the given matrix as $A=\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{bmatrix}$
Then, the determinant of A is given by;
$|A|=\begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{vmatrix}\\
|A|=1$
we can now determine the adjoint of the matrix A by calculating the cofactors for each element and then transposing the cofactor matrix,
The matrix of cofactors of $A = \begin{bmatrix} {{c}_{11}} & {{c}_{12}} & {{c}_{13}} \\ {{c}_{21}} & {{c}_{22}} & {{c}_{23}} \\ {{c}_{31}} & {{c}_{32}} & {{c}_{33}} \\ \end{bmatrix}=\begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \\ \end{bmatrix}$
Therefore, the transpose of the cofactor matrix is an Adjoint matrix.
$Adj(A)= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
The inverse of a matrix A is:
${{A}^{-1}}=\frac{1}{|A|}\,.\,adjA\\
{{A}^{-1}}=1.\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}\\
{{A}^{-1}}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
So, option C is correct.
Note: The inverse of a matrix can only exist if the matrix's determinant has a non-zero value |A| i.e., $|A|\neq 0$. The provided matrix must be square. In making the cofactor matrix reverse the sign of the alternating terms to create the adjoint or adjugate matrix.
Formula Used:
Inverse Matrix Formula$=A^{-1}=\frac{1}{|A|}.AdjA$
Complete step by step Solution:
Let the given matrix as $A=\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{bmatrix}$
Then, the determinant of A is given by;
$|A|=\begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{vmatrix}\\
|A|=1$
we can now determine the adjoint of the matrix A by calculating the cofactors for each element and then transposing the cofactor matrix,
The matrix of cofactors of $A = \begin{bmatrix} {{c}_{11}} & {{c}_{12}} & {{c}_{13}} \\ {{c}_{21}} & {{c}_{22}} & {{c}_{23}} \\ {{c}_{31}} & {{c}_{32}} & {{c}_{33}} \\ \end{bmatrix}=\begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \\ \end{bmatrix}$
Therefore, the transpose of the cofactor matrix is an Adjoint matrix.
$Adj(A)= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
The inverse of a matrix A is:
${{A}^{-1}}=\frac{1}{|A|}\,.\,adjA\\
{{A}^{-1}}=1.\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}\\
{{A}^{-1}}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
So, option C is correct.
Note: The inverse of a matrix can only exist if the matrix's determinant has a non-zero value |A| i.e., $|A|\neq 0$. The provided matrix must be square. In making the cofactor matrix reverse the sign of the alternating terms to create the adjoint or adjugate matrix.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

