
Inverse of a diagonal non-singular matrix is:
$A.$ Symmetric matrix
$B.$ Skew-symmetric matrix
$C.$ Diagonal matrix
$D.$ Scalar matrix
Answer
216.3k+ views
Hint: - Just consider the cases given by taking an example in mind to solve such problems. These questions don’t need lots of working.
Taking an example of a diagonal matrix and finding its inverse we check the following result.
$A = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right)$ Where $A$is a diagonal matrix.
${A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{3}}&0 \\
0&0&{\dfrac{1}{4}}
\end{array}} \right)$ and${A^{ - 1}}$ is the inverse of a diagonal matrix.
We find by an example that the inverse of a diagonal matrix is also a diagonal matrix.
Inverse of a nonsingular diagonal matrix is a nonsingular diagonal matrix with all the diagonal elements inverted. Therefore, the resultant invertible matrix is a diagonal matrix.
So the correct option is C.
Note: In linear algebra, a diagonal matrix has values of entries outside the main diagonal as zero; the term usually refers to a square matrix. In the above question it is easier to check the results by example rather than going by finding formulae.
Taking an example of a diagonal matrix and finding its inverse we check the following result.
$A = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right)$ Where $A$is a diagonal matrix.
${A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{3}}&0 \\
0&0&{\dfrac{1}{4}}
\end{array}} \right)$ and${A^{ - 1}}$ is the inverse of a diagonal matrix.
We find by an example that the inverse of a diagonal matrix is also a diagonal matrix.
Inverse of a nonsingular diagonal matrix is a nonsingular diagonal matrix with all the diagonal elements inverted. Therefore, the resultant invertible matrix is a diagonal matrix.
So the correct option is C.
Note: In linear algebra, a diagonal matrix has values of entries outside the main diagonal as zero; the term usually refers to a square matrix. In the above question it is easier to check the results by example rather than going by finding formulae.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

