
Inverse of a diagonal non-singular matrix is:
$A.$ Symmetric matrix
$B.$ Skew-symmetric matrix
$C.$ Diagonal matrix
$D.$ Scalar matrix
Answer
217.8k+ views
Hint: - Just consider the cases given by taking an example in mind to solve such problems. These questions don’t need lots of working.
Taking an example of a diagonal matrix and finding its inverse we check the following result.
$A = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right)$ Where $A$is a diagonal matrix.
${A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{3}}&0 \\
0&0&{\dfrac{1}{4}}
\end{array}} \right)$ and${A^{ - 1}}$ is the inverse of a diagonal matrix.
We find by an example that the inverse of a diagonal matrix is also a diagonal matrix.
Inverse of a nonsingular diagonal matrix is a nonsingular diagonal matrix with all the diagonal elements inverted. Therefore, the resultant invertible matrix is a diagonal matrix.
So the correct option is C.
Note: In linear algebra, a diagonal matrix has values of entries outside the main diagonal as zero; the term usually refers to a square matrix. In the above question it is easier to check the results by example rather than going by finding formulae.
Taking an example of a diagonal matrix and finding its inverse we check the following result.
$A = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right)$ Where $A$is a diagonal matrix.
${A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&{\dfrac{1}{3}}&0 \\
0&0&{\dfrac{1}{4}}
\end{array}} \right)$ and${A^{ - 1}}$ is the inverse of a diagonal matrix.
We find by an example that the inverse of a diagonal matrix is also a diagonal matrix.
Inverse of a nonsingular diagonal matrix is a nonsingular diagonal matrix with all the diagonal elements inverted. Therefore, the resultant invertible matrix is a diagonal matrix.
So the correct option is C.
Note: In linear algebra, a diagonal matrix has values of entries outside the main diagonal as zero; the term usually refers to a square matrix. In the above question it is easier to check the results by example rather than going by finding formulae.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

