
Intensity of the central fringe in interference pattern is $0.01\;{\text{W}}/{{\text{m}}^2}$ then find intensity at a point having path difference $\lambda /3$ on screen from center in ${\text{mW}}/{{\text{m}}^2}$.
(1) 2.5 (2) 5 (3) 7.5 (4) 10
Answer
216.3k+ views
Hint: The above problem can be solved by using the principle of interference. There are two types of the fringes formed in the interference pattern, first one is the bright fringe and other one is the dark fringes. The intensity of the fringe varies with the distance from the screen, distance between the slits and phase angle.
Complete step by step answer
Given,
The intensity of the central fringe is ${I_c} = 0.01\;{\text{W}}/{{\text{m}}^2}$.
The path difference at a point is $\Delta x = \lambda /3$.
The equation to calculate the intensity of reference fringe is given as:
$\Rightarrow {I_c} = 4{I_0}{\cos ^2}\left( {\phi /2} \right)......\left( 1 \right)$
Here,$\phi $ is the phase angle and its value for the central fringe is $0^\circ $.
Substitute $\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2}$for ${I_c}$ and $0^\circ $for $\phi $ in the equation (1) to find the reference intensity.
$\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2} = 4{I_0}\left( {{{\cos }^2}\left( {0^\circ } \right)/2} \right)$
$\Rightarrow {I_0} = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
The equation to calculate the phase angle for the point at which the intensity is to be find is,
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda } \times \Delta x......\left( 2 \right)$
Substitute $\lambda /3$for $\Delta x$ in the equation (2) to find the phase angle at the point.
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{3}} \right)$
$\Rightarrow \alpha = \dfrac{{2\pi }}{3}$
The equation to find the intensity at a point is given as:
$\Rightarrow I = {I_0}{\cos ^2}\left( {\dfrac{\alpha }{2}} \right)......\left( 3 \right)$
Substitute $\Rightarrow \dfrac{{2\pi }}{3}$for $\alpha $ and $2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$for ${I_0}$ in the equation (3) to find the intensity at the point.
$\Rightarrow I = 4\left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {{{\cos }^2}\left( {\dfrac{{\dfrac{{2\pi }}{3}}}{2}} \right)} \right)$
$\Rightarrow I = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
$\Rightarrow I = \left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {\dfrac{{1\;{\text{mW}}/{{\text{m}}^2}}}{{{{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}}}} \right)$
$\Rightarrow I = 2.5\;{\text{mW}}/{{\text{m}}^2}$
Thus, the find intensity at a point having path difference $\lambda /3$ on screen from center is $2.5\;{\text{mW}}/{{\text{m}}^2}$ and the option (1) is the correct answer.
Note: Calculate the phase angle for the point at which the intensity has to be calculated. The calculated intensity at the point is in ${\text{W}}/{{\text{m}}^2}$, but the options are given in the ${\text{mW}}/{{\text{m}}^2}$ so to find the correct option unit conversion is necessary.
Complete step by step answer
Given,
The intensity of the central fringe is ${I_c} = 0.01\;{\text{W}}/{{\text{m}}^2}$.
The path difference at a point is $\Delta x = \lambda /3$.
The equation to calculate the intensity of reference fringe is given as:
$\Rightarrow {I_c} = 4{I_0}{\cos ^2}\left( {\phi /2} \right)......\left( 1 \right)$
Here,$\phi $ is the phase angle and its value for the central fringe is $0^\circ $.
Substitute $\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2}$for ${I_c}$ and $0^\circ $for $\phi $ in the equation (1) to find the reference intensity.
$\Rightarrow 0.01\;{\text{W}}/{{\text{m}}^2} = 4{I_0}\left( {{{\cos }^2}\left( {0^\circ } \right)/2} \right)$
$\Rightarrow {I_0} = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
The equation to calculate the phase angle for the point at which the intensity is to be find is,
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda } \times \Delta x......\left( 2 \right)$
Substitute $\lambda /3$for $\Delta x$ in the equation (2) to find the phase angle at the point.
$\Rightarrow \alpha = \dfrac{{2\pi }}{\lambda }\left( {\dfrac{\lambda }{3}} \right)$
$\Rightarrow \alpha = \dfrac{{2\pi }}{3}$
The equation to find the intensity at a point is given as:
$\Rightarrow I = {I_0}{\cos ^2}\left( {\dfrac{\alpha }{2}} \right)......\left( 3 \right)$
Substitute $\Rightarrow \dfrac{{2\pi }}{3}$for $\alpha $ and $2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$for ${I_0}$ in the equation (3) to find the intensity at the point.
$\Rightarrow I = 4\left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {{{\cos }^2}\left( {\dfrac{{\dfrac{{2\pi }}{3}}}{2}} \right)} \right)$
$\Rightarrow I = 2.5 \times {10^{ - 3}}\;{\text{W}}/{{\text{m}}^2}$
$\Rightarrow I = \left( {2.5 \times {{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}} \right)\left( {\dfrac{{1\;{\text{mW}}/{{\text{m}}^2}}}{{{{10}^{ - 3}}\;{\text{W}}/{{\text{m}}^2}}}} \right)$
$\Rightarrow I = 2.5\;{\text{mW}}/{{\text{m}}^2}$
Thus, the find intensity at a point having path difference $\lambda /3$ on screen from center is $2.5\;{\text{mW}}/{{\text{m}}^2}$ and the option (1) is the correct answer.
Note: Calculate the phase angle for the point at which the intensity has to be calculated. The calculated intensity at the point is in ${\text{W}}/{{\text{m}}^2}$, but the options are given in the ${\text{mW}}/{{\text{m}}^2}$ so to find the correct option unit conversion is necessary.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

