
Integrate $\dfrac{{\cos 2x - \cos 2a}}{{\cos x - \cos a}}$ with respect to x.
Answer
217.8k+ views
Hint: We will use trigonometric identities in the function to eliminate the denominator, which makes it easier to integrate. Also, some formulas for integration will be used. These are given by-
$\cos 2{\text{A}} = 2{\cos ^2}{\text{A}} - 1$
$\smallint cosxdx = sinx + {\text{c}}$
Complete step-by-step answer:
Using the formula for cos 2A, the given expression can be written as-
$ = \dfrac{{2{{\cos }^2}{\text{x}} - 1 - \left( {2{{\cos }^2}{\text{a}} - 1} \right)}}{{cosx - cosa}}$
$ = \dfrac{{2\left( {{{\cos }^2}{\text{x}} - {{\cos }^2}{\text{a}}} \right)}}{{cosx - cosa}}$
$ = \dfrac{{2\left( {cosx - cosa} \right)\left( {cosx + cosa} \right)}}{{cosx - cosa}}$
$ = 2\left( {cosx + cosa} \right)$
This is a simplified expression which can be integrated easily. Now, we can integrate the given expression with respect to x,
$ = \smallint 2\left( {\cos x - \cos a} \right)dx$
$ = 2\left[ {\smallint \cos xdx - \smallint \cos adx} \right]$
$ = 2\left[ {\sin x - x\cos a} \right] + c$
$ = 2\sin x - 2x\cos a + c$
Here, cosa is a constant hence it comes out of the integral sign. But cosx is integrated to sinx using the given formula.
This is the required answer.
Note: One common mistake is that the students integrate the cosa into sina, but this is incorrect as cosa is a constant. Also, since limits are not mentioned, we should add an integration constant (c).
$\cos 2{\text{A}} = 2{\cos ^2}{\text{A}} - 1$
$\smallint cosxdx = sinx + {\text{c}}$
Complete step-by-step answer:
Using the formula for cos 2A, the given expression can be written as-
$ = \dfrac{{2{{\cos }^2}{\text{x}} - 1 - \left( {2{{\cos }^2}{\text{a}} - 1} \right)}}{{cosx - cosa}}$
$ = \dfrac{{2\left( {{{\cos }^2}{\text{x}} - {{\cos }^2}{\text{a}}} \right)}}{{cosx - cosa}}$
$ = \dfrac{{2\left( {cosx - cosa} \right)\left( {cosx + cosa} \right)}}{{cosx - cosa}}$
$ = 2\left( {cosx + cosa} \right)$
This is a simplified expression which can be integrated easily. Now, we can integrate the given expression with respect to x,
$ = \smallint 2\left( {\cos x - \cos a} \right)dx$
$ = 2\left[ {\smallint \cos xdx - \smallint \cos adx} \right]$
$ = 2\left[ {\sin x - x\cos a} \right] + c$
$ = 2\sin x - 2x\cos a + c$
Here, cosa is a constant hence it comes out of the integral sign. But cosx is integrated to sinx using the given formula.
This is the required answer.
Note: One common mistake is that the students integrate the cosa into sina, but this is incorrect as cosa is a constant. Also, since limits are not mentioned, we should add an integration constant (c).
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

