
What is $\int {\dfrac{{dx}}{{{2^x} - 1}}} $ equal to?
A. $\ln ({2^x} - 1) + c$
B. \[\dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c\]
C. \[\dfrac{{\ln ({2^{ - x}} - 1)}}{{\ln 2}} + c\]
D. \[\dfrac{{\ln (1 + {2^{ - x}})}}{{\ln 2}} + c\]
Answer
214.5k+ views
Hint: Here, we need to solve the given integral by substitution method and then simplifying the given integral and then the use of the required formulae of integration.
Complete step-by-step answer:
Let $I = \int {\dfrac{{dx}}{{{2^x} - 1}}} $
Let ${2^x} - 1 = t$
Differentiate it w.r.t x
$
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \ln 2 \times {2^x}dx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\
\Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\
$
Now substitute this value in the integral
$I = \int {\dfrac{1}{t}\dfrac{{dt}}{{(t + 1)\ln 2}}} $
Now apply partial fraction for $\dfrac{1}{{t(t + 1)}}$
$ = \dfrac{1}{{\ln 2}}\int {\left( {\dfrac{1}{t} - \dfrac{1}{{t + 1}}} \right)} dt$
Now apply integration
$
= \dfrac{1}{{\ln 2}}[\ln t - \ln (t + 1)] + c \\
= \dfrac{1}{{\ln 2}}[\ln \dfrac{t}{{t + 1}}] + c \\
$
Substitute the value of $t = {2^x} - 1$
$
= \dfrac{1}{{\ln 2}}\left[ {\ln \dfrac{{({2^x} - 1)}}{{{2^x}}}} \right] + c \\
\Rightarrow \dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c \\
$
Therefore, option B is correct.
Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.
Complete step-by-step answer:
Let $I = \int {\dfrac{{dx}}{{{2^x} - 1}}} $
Let ${2^x} - 1 = t$
Differentiate it w.r.t x
$
\Rightarrow \dfrac{{d({2^x} - 1)}}{{dx}} = \dfrac{{dt}}{{dx}} \\
\Rightarrow \ln 2 \times {2^x}dx = dt \\
\Rightarrow dx = \dfrac{{dt}}{{{2^x}\ln 2}}{\text{ & }}{{\text{2}}^x} = t + 1 \\
\Rightarrow dx = \dfrac{{dt}}{{(t + 1)\ln 2}} \\
$
Now substitute this value in the integral
$I = \int {\dfrac{1}{t}\dfrac{{dt}}{{(t + 1)\ln 2}}} $
Now apply partial fraction for $\dfrac{1}{{t(t + 1)}}$
$ = \dfrac{1}{{\ln 2}}\int {\left( {\dfrac{1}{t} - \dfrac{1}{{t + 1}}} \right)} dt$
Now apply integration
$
= \dfrac{1}{{\ln 2}}[\ln t - \ln (t + 1)] + c \\
= \dfrac{1}{{\ln 2}}[\ln \dfrac{t}{{t + 1}}] + c \\
$
Substitute the value of $t = {2^x} - 1$
$
= \dfrac{1}{{\ln 2}}\left[ {\ln \dfrac{{({2^x} - 1)}}{{{2^x}}}} \right] + c \\
\Rightarrow \dfrac{{\ln (1 - {2^{ - x}})}}{{\ln 2}} + c \\
$
Therefore, option B is correct.
Note: Integrals can be simplified to standard form by substitution techniques which can be easily evaluated using the standard integration formulas.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

