
In the figure shown, find the total magnification after two successive reflections first on ${M_1}$ and then on ${M_2}$ .

A. $ + 1$
B. $ - 2$
C. $ + 2$
D. $ - 1$
Answer
219k+ views
Hint: The two reflections M1 and M2's magnification must first be determined. Here, we need to use the mirror formula to find the image distance i.e, v. The value of u, is already given. After that, we can find the total magnification.
Formula used:
1. Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
Magnification :
$M=-\dfrac{v}{u}$
Magnification = ${M_1} \times {M_2}$
Complete answer:
Let’s first determine $M_{1}$’s magnification:
Given:
Mirror1’s distance from the object is u=-30
The focal length is f=-20cm
The image’s distance from the mirror is given by, v which needs to be determined.
According to the mirror formula,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Rearranging the equation,
$\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u}$
By putting the values in the above equation we get that,
$\dfrac{1}{v} = \dfrac{1}{{ - 20}} + \dfrac{1}{{30}}$
Further solving we get,
$v = \dfrac{{ - 20 \times 30}}{{10}}$
By completing the calculation we get the value of v as,
$v = - 60cm$
Now $M_{1}$ will be,
$M_{1}=-\dfrac{v}{u}$
By putting the values in the above equation we get,
$M_{1}=-\dfrac{-60}{-30}$
$M_{1}=-2$
Next, determine $M_{2}$'s magnification:
Given:
Mirror1’s distance from the object is u=20 (The image that is created will serve as an object for ${M_2}$ and will be located 20cm left of ${M_2}$ )
The focal length is f=10cm
The image’s distance from the mirror is given by, v which needs to be determined.
Let’s put values in the above-used mirror formula to find v.
$\dfrac{1}{v} = \dfrac{1}{{10}} - \dfrac{1}{{20}}$
Further solving we get,
$v = \dfrac{{10 \times 20}}{{10}} = 20cm$
Now $M_{2}$ will be,
$M_{2}=-\dfrac{v}{u}$
By putting the values in the above equation we get,
$M_{2}=-\dfrac{20}{20}$
$M_{1}=-1$
The total magnification can be determined by the below-mentioned formula,
Magnification = ${M_1} \times {M_2}$
By putting the value we get that,
Magnification = $M=\lgroup-2\rgroup\times\lgroup-1\rgroup$
Therefore, the total magnification is 2.
The correct option is C.
Note:Be careful regarding sign convention. All distances are calculated starting at the mirror's pole. Also, the image that is created will serve as an object for ${M_2}$. So, don’t take the object distance for ${M_2}$ to be 30 cm by blindly following the diagram.
Formula used:
1. Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
Magnification :
$M=-\dfrac{v}{u}$
Magnification = ${M_1} \times {M_2}$
Complete answer:
Let’s first determine $M_{1}$’s magnification:
Given:
Mirror1’s distance from the object is u=-30
The focal length is f=-20cm
The image’s distance from the mirror is given by, v which needs to be determined.
According to the mirror formula,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Rearranging the equation,
$\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u}$
By putting the values in the above equation we get that,
$\dfrac{1}{v} = \dfrac{1}{{ - 20}} + \dfrac{1}{{30}}$
Further solving we get,
$v = \dfrac{{ - 20 \times 30}}{{10}}$
By completing the calculation we get the value of v as,
$v = - 60cm$
Now $M_{1}$ will be,
$M_{1}=-\dfrac{v}{u}$
By putting the values in the above equation we get,
$M_{1}=-\dfrac{-60}{-30}$
$M_{1}=-2$
Next, determine $M_{2}$'s magnification:
Given:
Mirror1’s distance from the object is u=20 (The image that is created will serve as an object for ${M_2}$ and will be located 20cm left of ${M_2}$ )
The focal length is f=10cm
The image’s distance from the mirror is given by, v which needs to be determined.
Let’s put values in the above-used mirror formula to find v.
$\dfrac{1}{v} = \dfrac{1}{{10}} - \dfrac{1}{{20}}$
Further solving we get,
$v = \dfrac{{10 \times 20}}{{10}} = 20cm$
Now $M_{2}$ will be,
$M_{2}=-\dfrac{v}{u}$
By putting the values in the above equation we get,
$M_{2}=-\dfrac{20}{20}$
$M_{1}=-1$
The total magnification can be determined by the below-mentioned formula,
Magnification = ${M_1} \times {M_2}$
By putting the value we get that,
Magnification = $M=\lgroup-2\rgroup\times\lgroup-1\rgroup$
Therefore, the total magnification is 2.
The correct option is C.
Note:Be careful regarding sign convention. All distances are calculated starting at the mirror's pole. Also, the image that is created will serve as an object for ${M_2}$. So, don’t take the object distance for ${M_2}$ to be 30 cm by blindly following the diagram.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

