
In \[\Delta ABC\], if a = 16, b = 24, and c = 20, then find \[\cos \dfrac{B}{2}\].
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{3}\]
Answer
218.1k+ views
Hint: First we will find the semi perimeter of the \[\Delta ABC\]. Then we apply the half angle cosine rule to calculate the value of \[\cos \dfrac{B}{2}\].
Formula used:
The semi perimeter of a triangle is \[s = \dfrac{{a + b + c}}{2}\], where a, b, c are length of sides.
The half angle cosine formula is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
Complete step by step solution:
Given that if a = 16, b = 24, and c = 20.
Now we will plug the value of a, b, c in \[s = \dfrac{{a + b + c}}{2}\] to calculate the semi perimeter.
\[s = \dfrac{{16 + 24 + 20}}{2}\]
\[ \Rightarrow s = \dfrac{{60}}{2}\]
\[ \Rightarrow s = 30\]
The half angle formula for cosine is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \].
Substitute the value of s, a, b, c:
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{30\left( {30 - 24} \right)}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{30 \cdot 6}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{3 \cdot 3}}{{16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \dfrac{3}{4}\]
Hence option A is the correct option.
Additional information:
We can derive the half angle formula by using trigonometry identities. We know cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[ \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now applying the trigonometry identity \[2{\cos ^2}\dfrac{A}{2} - 1 = \cos A\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} - 1 = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + 1\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2} + 2bc}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c - a} \right)}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c + a - 2a} \right)}}{{2bc}}\]
We know that \[2s = a + b + c\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{2s\left( {2s - 2a} \right)}}{{2bc}}\]
\[ \Rightarrow {\cos ^2}\dfrac{A}{2} = \dfrac{{s\left( {s - a} \right)}}{{bc}}\]
Note: Students are often confused with semi perimeter and perimeter. The half of the perimeter is known as semi perimeter and semi perimeter is denoted by s. Perimeter is the sum of all sides.
Formula used:
The semi perimeter of a triangle is \[s = \dfrac{{a + b + c}}{2}\], where a, b, c are length of sides.
The half angle cosine formula is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
Complete step by step solution:
Given that if a = 16, b = 24, and c = 20.
Now we will plug the value of a, b, c in \[s = \dfrac{{a + b + c}}{2}\] to calculate the semi perimeter.
\[s = \dfrac{{16 + 24 + 20}}{2}\]
\[ \Rightarrow s = \dfrac{{60}}{2}\]
\[ \Rightarrow s = 30\]
The half angle formula for cosine is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \].
Substitute the value of s, a, b, c:
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{30\left( {30 - 24} \right)}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{30 \cdot 6}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{3 \cdot 3}}{{16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \dfrac{3}{4}\]
Hence option A is the correct option.
Additional information:
We can derive the half angle formula by using trigonometry identities. We know cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[ \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now applying the trigonometry identity \[2{\cos ^2}\dfrac{A}{2} - 1 = \cos A\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} - 1 = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + 1\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2} + 2bc}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c - a} \right)}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c + a - 2a} \right)}}{{2bc}}\]
We know that \[2s = a + b + c\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{2s\left( {2s - 2a} \right)}}{{2bc}}\]
\[ \Rightarrow {\cos ^2}\dfrac{A}{2} = \dfrac{{s\left( {s - a} \right)}}{{bc}}\]
Note: Students are often confused with semi perimeter and perimeter. The half of the perimeter is known as semi perimeter and semi perimeter is denoted by s. Perimeter is the sum of all sides.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

