
In an experiment with vibration magneto-meter the value of \[4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\] for a short bar magnet is observed as \[36\times {{10}^{-4}}\]. In the experiment with deflection magnetometer with the same magnet the value of \[\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\] is observed as \[\dfrac{{{10}^{8}}}{36}\]. The magnetic moment of the magnet used is:
A) \[50A{{m}^{2}}\]
B) \[100A{{m}^{2}}\]
C) \[200A{{m}^{2}}\]
D) \[1000A{{m}^{2}}\]
Answer
126.3k+ views
Hint: Let us know about a vibration magnetometer in brief before proceeding with the solution. A vibration magnetometer is used for the comparison of magnetic moments and magnetic fields. This device works on the principle that whenever a freely suspended magnet in a uniform magnetic field is disturbed from its equilibrium position, it starts vibrating about the mean position. In short, we can say vibration magnetometers work on the principle of torque acting on the bar magnet.
Formula Used:
\[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\], \[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
Complete step by step solution:
For a vibration magnetometer, we have \[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\] where \[m\] is the magnetic moment of the magnet, \[{{B}_{H}}\] is the intensity of the horizontal component of the earth’s magnetic field and \[T\] is the period of oscillation or the vibration period.
From the equation of the working principle of a magnetometer, we have
\[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\] where \[d\] is the distance of the magnet from the magnetometer and \[{{\mu }_{0}}\] is the permeability constant
Multiplying the two equations written above, we get \[{{m}^{2}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\times \dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
The values of both the terms have been provided to us in the question. Substituting the values, \[4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\]\[=36\times {{10}^{-4}}\], and \[\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]\[=\dfrac{{{10}^{8}}}{36}\], we get,
\[\begin{align}
& {{m}^{2}}=36\times {{10}^{-4}}\times \dfrac{{{10}^{8}}}{36} \\
& \Rightarrow {{m}^{2}}={{10}^{4}} \\
& \Rightarrow m=100A{{m}^{2}} \\
\end{align}\]
The magnetic moment of the magnet is \[100A{{m}^{2}}\] and hence option (B) is the correct answer.
Note: We have two independent equations that both relate the magnetic moment of the magnet with the horizontal component of the earth’s magnetic field. Most students make the mistake of using only the equation of the working principle of the magnetometer and transposing the terms of the equation to try and find the unknown quantity and end up complexing the problem. We obtained our solution through a simple product, so you have to keep your heads open.
Formula Used:
\[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\], \[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
Complete step by step solution:
For a vibration magnetometer, we have \[m{{B}_{H}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\] where \[m\] is the magnetic moment of the magnet, \[{{B}_{H}}\] is the intensity of the horizontal component of the earth’s magnetic field and \[T\] is the period of oscillation or the vibration period.
From the equation of the working principle of a magnetometer, we have
\[\dfrac{m}{{{B}_{H}}}=\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\] where \[d\] is the distance of the magnet from the magnetometer and \[{{\mu }_{0}}\] is the permeability constant
Multiplying the two equations written above, we get \[{{m}^{2}}=4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\times \dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]
The values of both the terms have been provided to us in the question. Substituting the values, \[4{{\pi }^{2}}\dfrac{I}{{{T}^{2}}}\]\[=36\times {{10}^{-4}}\], and \[\dfrac{4\pi {{d}^{3}}}{2{{\mu }_{0}}}\]\[=\dfrac{{{10}^{8}}}{36}\], we get,
\[\begin{align}
& {{m}^{2}}=36\times {{10}^{-4}}\times \dfrac{{{10}^{8}}}{36} \\
& \Rightarrow {{m}^{2}}={{10}^{4}} \\
& \Rightarrow m=100A{{m}^{2}} \\
\end{align}\]
The magnetic moment of the magnet is \[100A{{m}^{2}}\] and hence option (B) is the correct answer.
Note: We have two independent equations that both relate the magnetic moment of the magnet with the horizontal component of the earth’s magnetic field. Most students make the mistake of using only the equation of the working principle of the magnetometer and transposing the terms of the equation to try and find the unknown quantity and end up complexing the problem. We obtained our solution through a simple product, so you have to keep your heads open.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
