
In a plane progressive harmonic wave, particle speed is always less than the wave speed, if:-
A. Amplitude of wave is less than \[\dfrac{\lambda }{{2\pi }}\]
B. Amplitude of wave is greater than \[\dfrac{\lambda }{{2\pi }}\]
C. Amplitude of wave is less than \[\lambda \]
D. Amplitude of wave is greater than \[\dfrac{\lambda }{\pi }\]
Answer
216.6k+ views
Hint: The particle of the medium will oscillate along the vertical direction as the plane progressive harmonic wave travels. For the particle we use the sine wave function of displacement to find the velocity or displacement. The maximum velocity of the cork will be at the mean equilibrium position.
Formula used:
\[v = \nu \lambda \]
where v is the wave speed, \[\nu \] is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
\[{v_{\max }} = \omega A\]
where \[{v_{\max }}\] is the maximum speed of simple harmonic motion, \[\omega \] is the angular frequency and A is the amplitude of the oscillation.
Complete step by step solution:
Let the particle speed is \[{v_p}\]and the wave speed is \[{v_w}\]. The general equation of the progressive wave is given as,
\[y\left( {x,t} \right) = A\sin \left( {\omega t - kx} \right)\]
Here, A is the amplitude of the vertical displacement, \[\omega \] is the angular frequency of the wave and k is the wave number of the wave.
The wave speed is given as,
\[{v_w} = \dfrac{\omega }{K}\]
Here, K is the wave number and it is related to the wavelength as,
\[K = \dfrac{{2\pi }}{\lambda } \ldots \left( i \right)\]
The particle speed is given as,
\[{v_p} = \omega \sqrt {{A^2} - {y^2}} \]
So, the maximum speed of the particle is when it is at mean position, i.e. the displacement is zero.
\[{v_{p\left( {\max } \right)}} = \omega A\]
As per the question the particle speed is less than the wave speed,
\[{v_{p\left( {\max } \right)}} < {v_w}\]
\[\Rightarrow\omega A < \dfrac{\omega }{K}\]
\[\Rightarrow A < \dfrac{1}{K}\]
From the first relation,
\[A < \dfrac{\lambda }{{2\pi }}\]
Hence, if the amplitude is less than \[\dfrac{\lambda }{{2\pi }}\] then the particle speed is always less than the wave speed.
Therefore, the correct option is A.
Note: We should be very clear that when a progressive wave is traveling through a medium then the particle of the medium oscillates about the mean position with varying speed which depends on the displacement from the mean position and the wave speed is constant.
Formula used:
\[v = \nu \lambda \]
where v is the wave speed, \[\nu \] is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
\[{v_{\max }} = \omega A\]
where \[{v_{\max }}\] is the maximum speed of simple harmonic motion, \[\omega \] is the angular frequency and A is the amplitude of the oscillation.
Complete step by step solution:
Let the particle speed is \[{v_p}\]and the wave speed is \[{v_w}\]. The general equation of the progressive wave is given as,
\[y\left( {x,t} \right) = A\sin \left( {\omega t - kx} \right)\]
Here, A is the amplitude of the vertical displacement, \[\omega \] is the angular frequency of the wave and k is the wave number of the wave.
The wave speed is given as,
\[{v_w} = \dfrac{\omega }{K}\]
Here, K is the wave number and it is related to the wavelength as,
\[K = \dfrac{{2\pi }}{\lambda } \ldots \left( i \right)\]
The particle speed is given as,
\[{v_p} = \omega \sqrt {{A^2} - {y^2}} \]
So, the maximum speed of the particle is when it is at mean position, i.e. the displacement is zero.
\[{v_{p\left( {\max } \right)}} = \omega A\]
As per the question the particle speed is less than the wave speed,
\[{v_{p\left( {\max } \right)}} < {v_w}\]
\[\Rightarrow\omega A < \dfrac{\omega }{K}\]
\[\Rightarrow A < \dfrac{1}{K}\]
From the first relation,
\[A < \dfrac{\lambda }{{2\pi }}\]
Hence, if the amplitude is less than \[\dfrac{\lambda }{{2\pi }}\] then the particle speed is always less than the wave speed.
Therefore, the correct option is A.
Note: We should be very clear that when a progressive wave is traveling through a medium then the particle of the medium oscillates about the mean position with varying speed which depends on the displacement from the mean position and the wave speed is constant.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

