
In a game of lawn chess, where pieces are moved between the centers of squares that are each $1m$ on edge, a knight is moved in the following way: (1) two squares forward, one square rightward; (2) two squares leftward, one square forward; (3) two squares forward, one square leftward. What are (a) the magnitude and (b) the angle (relative to forward) of the knight’s overall displacement for the series of three moves?
Answer
233.1k+ views
Hint: We solve this question by representing each of the moves taken by the knight in vector form. We represent each of the moves in \[x,y\]coordinates in vector form. Horizontal movements as \[x\] and vertical movements as $y$. After representing the moves in their vector form we add the vectors and find its magnitude to get the displacement. To find the overall angle relative to the forward we use the formula of the vertical component of a vector.
Complete step by step solution:
Taking the length of each side of the square as one unit.
Vector representation of each move is
First move is two squares forward and one square rightward
$1){\vec d_1} = 2\hat j + 1\hat i$
Second move is one square forward and two squares leftward
$2){\vec d_2} = \hat j - 2\hat i$
Third move is two squares forward and one square leftward
$3){\vec d_3} = 2\hat j - 1\hat i$
Here, the displacement of each move is ${\vec d_1},{\vec d_2},{\vec d_3}$
$\hat j$ is the representation of movements in vertical direction and $\hat i$ is the representation of movements in horizontal direction.
The sum of these vectors gives us the vector representation of the displacement.
$ {{\vec d}_R} = {{\vec d}_1} + {{\vec d}_3} + {{\vec d}_2} $
$ \Rightarrow {{\vec d}_R} = (2 + 1 + 2)\hat j + (1 - 2 - 1)\hat i = 5\hat j - 2\hat i $
To find the magnitude of displacement we find the square root of sum of squares of $5\hat j - 2\hat i$
$\left| {{{\vec d}_R}} \right| = \sqrt {{2^2} + {5^2}} = \sqrt {29} = 5.38m$
Here, magnitude of displacement is $\left| {{{\vec d}_R}} \right|$
Hence the magnitude of displacement is $5.38m$
The total displacement of the knight in vertical direction is ${d_v} =5\hat j$
The magnitude of the vertical component of the displacement is given as $| {{{\vec d}_v}} | =5$
It can also be represented as,
$ \left| {{{\vec d}_v}} \right| = \left| {{{\vec d}_R}} \right|cos\theta $
$ \Rightarrow \theta = co{s^{ - 1}}\dfrac{{\left| {{{\vec d}_v}} \right|}}{{\left| {{{\vec d}_R}} \right|}} $
$ \Rightarrow \theta = co{s^{ - 1}}(\dfrac{5}{{5.35}}) $
$ \Rightarrow \theta = 21.66^\circ $
Where $\theta$ is the angle between the resultant displacement vector and the vertical component of distance.
Hence the angle (relative to forward) of the knight’s overall displacement for the series of three moves is $\theta = 21.66^\circ $
Note: We can also solve this problem by making a pictorial representation of the moves and using the Pythagoras theorem. And then use the formula of the vector vertical component to find the angle between the displacement and the forward relative to the knight. The units of displacement are meters.
Complete step by step solution:
Taking the length of each side of the square as one unit.
Vector representation of each move is
First move is two squares forward and one square rightward
$1){\vec d_1} = 2\hat j + 1\hat i$
Second move is one square forward and two squares leftward
$2){\vec d_2} = \hat j - 2\hat i$
Third move is two squares forward and one square leftward
$3){\vec d_3} = 2\hat j - 1\hat i$
Here, the displacement of each move is ${\vec d_1},{\vec d_2},{\vec d_3}$
$\hat j$ is the representation of movements in vertical direction and $\hat i$ is the representation of movements in horizontal direction.
The sum of these vectors gives us the vector representation of the displacement.
$ {{\vec d}_R} = {{\vec d}_1} + {{\vec d}_3} + {{\vec d}_2} $
$ \Rightarrow {{\vec d}_R} = (2 + 1 + 2)\hat j + (1 - 2 - 1)\hat i = 5\hat j - 2\hat i $
To find the magnitude of displacement we find the square root of sum of squares of $5\hat j - 2\hat i$
$\left| {{{\vec d}_R}} \right| = \sqrt {{2^2} + {5^2}} = \sqrt {29} = 5.38m$
Here, magnitude of displacement is $\left| {{{\vec d}_R}} \right|$
Hence the magnitude of displacement is $5.38m$
The total displacement of the knight in vertical direction is ${d_v} =5\hat j$
The magnitude of the vertical component of the displacement is given as $| {{{\vec d}_v}} | =5$
It can also be represented as,
$ \left| {{{\vec d}_v}} \right| = \left| {{{\vec d}_R}} \right|cos\theta $
$ \Rightarrow \theta = co{s^{ - 1}}\dfrac{{\left| {{{\vec d}_v}} \right|}}{{\left| {{{\vec d}_R}} \right|}} $
$ \Rightarrow \theta = co{s^{ - 1}}(\dfrac{5}{{5.35}}) $
$ \Rightarrow \theta = 21.66^\circ $
Where $\theta$ is the angle between the resultant displacement vector and the vertical component of distance.
Hence the angle (relative to forward) of the knight’s overall displacement for the series of three moves is $\theta = 21.66^\circ $
Note: We can also solve this problem by making a pictorial representation of the moves and using the Pythagoras theorem. And then use the formula of the vector vertical component to find the angle between the displacement and the forward relative to the knight. The units of displacement are meters.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

