
In a disc rolling on a surface with no-slip condition being satisfied, the following statement is true
(A) The velocity and acceleration of the point of contact is zero
(B) The velocity of the point of contact is zero and the acceleration of the point of contact is greater than zero.
(C) The velocity of the point of contact is greater than zero and the acceleration of the point of contact is zero
(D) The velocity and acceleration of the point of contact is greater than zero
Answer
219k+ views
Hint: Rolling without slipping is a combination of translation and rotation. In this case, the point of contact is instantaneously at rest. The object will also move in a straight line in the absence of a net external force. For the instantaneous velocity to be zero, the condition $v = R\omega $ must be true.
Here, $v$ is the linear velocity of the disc.
$R$ is the radius of the disc.
And $\omega $ is the angular velocity of the disc.
Complete step by step answer:
For rolling without slipping, the velocity at the point of contact is zero or the point in contact of the disc with the ground is stationary. This will be true, only if the linear velocity at the point of contact is equal to $v = R\omega $
The point of contact has two accelerations:
Tangential acceleration: Due to rotation of the disc there will be tangential acceleration which is given as ${a_T} = R\alpha $
Here, ${a_T}$ is the tangential acceleration,
$\alpha $ is the angular acceleration of the disc with respect to ground.
(ii) Normal acceleration: The direction of normal acceleration always passes through the center of mass of the disc.
Both the accelerations are perpendicular to each other. Thus, the net acceleration is not zero at the point of contact and it is at some angle depending on the value of the accelerations.
As acceleration of the point is contact is not zero and the velocity at the point of contact is zero
Therefore, option B is the correct option.
Note: The net acceleration of the disc is not zero and the direction of the net acceleration is given by taking the resultant vector of both the accelerations. The point of contact is always at rest and thus it’s instantaneous velocity is always zero. In cases of rolling without slipping the linear velocity is given as $v = R\omega $ .
Here, $v$ is the linear velocity of the disc.
$R$ is the radius of the disc.
And $\omega $ is the angular velocity of the disc.
Complete step by step answer:
For rolling without slipping, the velocity at the point of contact is zero or the point in contact of the disc with the ground is stationary. This will be true, only if the linear velocity at the point of contact is equal to $v = R\omega $
The point of contact has two accelerations:
Tangential acceleration: Due to rotation of the disc there will be tangential acceleration which is given as ${a_T} = R\alpha $
Here, ${a_T}$ is the tangential acceleration,
$\alpha $ is the angular acceleration of the disc with respect to ground.
(ii) Normal acceleration: The direction of normal acceleration always passes through the center of mass of the disc.
Both the accelerations are perpendicular to each other. Thus, the net acceleration is not zero at the point of contact and it is at some angle depending on the value of the accelerations.
As acceleration of the point is contact is not zero and the velocity at the point of contact is zero
Therefore, option B is the correct option.
Note: The net acceleration of the disc is not zero and the direction of the net acceleration is given by taking the resultant vector of both the accelerations. The point of contact is always at rest and thus it’s instantaneous velocity is always zero. In cases of rolling without slipping the linear velocity is given as $v = R\omega $ .
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

